Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 7 additions & 4 deletions mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2178,11 +2178,14 @@ vectorizePadOpPrecondition(tensor::PadOp padOp,
inputVectorSizes)))
return failure();

if (llvm::any_of(padOp.getLow(), [](Value v) {
std::optional<int64_t> res = getConstantIntValue(v);
return !res.has_value() || res.value() != 0;
if (llvm::any_of(llvm::enumerate(padOp.getLow()), [&](const auto &en) {
Value padValue = en.value();
unsigned pos = en.index();
std::optional<int64_t> res = getConstantIntValue(padValue);
return (!res.has_value() || res.value() != 0) &&
resultTensorShape[pos] != 1;
})) {
LDBG("low pad must all be zero: " << padOp << "\n");
LDBG("low pad must all be zero for all non unit dims: " << padOp << "\n");
return failure();
}

Expand Down
24 changes: 24 additions & 0 deletions mlir/test/Dialect/Linalg/vectorization-unsupported.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -305,6 +305,30 @@ module attributes {transform.with_named_sequence} {

// -----

func.func @test_masked_vectorize_lowpad(
%0 : tensor<?x?xf32>, %h0 : index, %h1 : index, %l0 : index)
-> tensor<2x4xf32> {
// expected-error @+3 {{Attempted to vectorize, but failed}}
%cst = arith.constant 42.43 : f32
%c0 = arith.constant 0 : index
%1 = tensor.pad %0 low[%l0, %c0] high[%h0, %h1] {
^bb0(%hh1: index, %hh2: index):
tensor.yield %cst : f32
} : tensor<?x?xf32> to tensor<2x4xf32>
return %1: tensor<2x4xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.pad"]} in %arg1
: (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [2, 4] : !transform.any_op
transform.yield
}
}

// -----

// With dynamically shaped source, the vectorizer infers the vector size for
// xfer Ops from the destination tensor and, conservatively, assumes
// out-of-bounds accesses. Out-of-bounds accesses require a pad value, but
Expand Down
40 changes: 40 additions & 0 deletions mlir/test/Dialect/Linalg/vectorization.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -666,6 +666,46 @@ module attributes {transform.with_named_sequence} {

// -----

// CHECK-LABEL: func @test_masked_vectorize_unit_lowpad
func.func @test_masked_vectorize_unit_lowpad(
%0 : tensor<?x?xf32>, %h0 : index, %h1 : index, %l0 : index)
-> tensor<1x4xf32>
{
// CHECK-DAG: %[[c42:.*]] = arith.constant 4.243000e+01 : f32
// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK: %[[c0_1:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[d0:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
// CHECK-DAG: %[[d1:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
// CHECK: %[[mask:.*]] = vector.create_mask %[[d0]], %[[d1]] : vector<1x4xi1>
// CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] {
// CHECK-SAME: vector.transfer_read %{{.*}}[%[[c0_1]], %[[c0_1]]], %[[c42]]
// CHECK-SAME: {in_bounds = [true, true]} : tensor<?x?xf32>, vector<1x4xf32>
// CHECK-SAME: } : vector<1x4xi1> -> vector<1x4xf32>
// CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<1x4xf32>
// CHECK-DAG: %[[c0_2:.*]] = arith.constant 0 : index
// CHECK: %[[masked_write:.*]] = vector.transfer_write %[[masked_read]], %[[empty]][%[[c0_2]], %[[c0_2]]]
// CHECK-SAME: {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
// CHECK: return %[[masked_write]] : tensor<1x4xf32>
%cst = arith.constant 42.43 : f32
%c0 = arith.constant 0 : index
%1 = tensor.pad %0 low[%l0, %c0] high[%h0, %h1] {
^bb0(%hh1: index, %hh2: index):
tensor.yield %cst : f32
} : tensor<?x?xf32> to tensor<1x4xf32>
return %1: tensor<1x4xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["tensor.pad"]} in %arg1
: (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 vector_sizes [1, 4] : !transform.any_op
transform.yield
}
}

// -----

// Input identical as the test in vectorization-with-patterns.mlir. Output is
// different - vector sizes are inferred (rather than user-specified) and hence
// masking was used.
Expand Down