-
Notifications
You must be signed in to change notification settings - Fork 15.2k
[libc][math] Implement double precision asin correctly rounded for all rounding modes. #134401
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 9 commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
3d1d86d
[libc][math] Implement double precision asin correctly rounded for al…
lntue 1d6b778
Fix the sign of the result when -1 <= x <= 0.5.
lntue 56258b5
Fix DAZ tests.
lntue 6cf6daa
Fix FTZ/DAZ.
lntue 65bb759
- Fix |x| = 1 inputs.
lntue 63d00fc
Address comments.
lntue d15fd3d
Fix dependency.
lntue d677fa6
Address comments.
lntue c3634c8
Address comment.
lntue b15580b
Address comment.
lntue 7711e5e
Address comment.
lntue File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,286 @@ | ||
| //===-- Double-precision asin function ------------------------------------===// | ||
| // | ||
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| // See https://llvm.org/LICENSE.txt for license information. | ||
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| // | ||
| //===----------------------------------------------------------------------===// | ||
|
|
||
| #include "src/math/asin.h" | ||
| #include "asin_utils.h" | ||
| #include "src/__support/FPUtil/FEnvImpl.h" | ||
| #include "src/__support/FPUtil/FPBits.h" | ||
| #include "src/__support/FPUtil/PolyEval.h" | ||
| #include "src/__support/FPUtil/double_double.h" | ||
| #include "src/__support/FPUtil/dyadic_float.h" | ||
| #include "src/__support/FPUtil/multiply_add.h" | ||
| #include "src/__support/FPUtil/sqrt.h" | ||
| #include "src/__support/macros/config.h" | ||
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY | ||
| #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA | ||
|
|
||
| namespace LIBC_NAMESPACE_DECL { | ||
|
|
||
| using DoubleDouble = fputil::DoubleDouble; | ||
| using Float128 = fputil::DyadicFloat<128>; | ||
|
|
||
| LLVM_LIBC_FUNCTION(double, asin, (double x)) { | ||
| using FPBits = fputil::FPBits<double>; | ||
|
|
||
| FPBits xbits(x); | ||
| int x_exp = xbits.get_biased_exponent(); | ||
|
|
||
| // |x| < 0.5. | ||
| if (x_exp < FPBits::EXP_BIAS - 1) { | ||
| // |x| < 2^-26. | ||
| if (LIBC_UNLIKELY(x_exp < FPBits::EXP_BIAS - 26)) { | ||
| // When |x| < 2^-26, the relative error of the approximation asin(x) ~ x | ||
| // is: | ||
| // |asin(x) - x| / |asin(x)| < |x^3| / (6|x|) | ||
| // = x^2 / 6 | ||
| // < 2^-54 | ||
| // < epsilon(1)/2. | ||
| // So the correctly rounded values of asin(x) are: | ||
| // = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, | ||
| // or (rounding mode = FE_UPWARD and x is | ||
| // negative), | ||
| // = x otherwise. | ||
| // To simplify the rounding decision and make it more efficient, we use | ||
| // fma(x, 2^-54, x) instead. | ||
| // Note: to use the formula x + 2^-54*x to decide the correct rounding, we | ||
| // do need fma(x, 2^-54, x) to prevent underflow caused by 2^-54*x when | ||
| // |x| < 2^-1022. For targets without FMA instructions, when x is close to | ||
| // denormal range, we normalize x, | ||
| #if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS) | ||
| return x; | ||
| #elif defined(LIBC_TARGET_CPU_HAS_FMA_DOUBLE) | ||
| return fputil::multiply_add(x, 0x1.0p-54, x); | ||
| #else | ||
| if (xbits.abs().uintval() == 0) | ||
| return x; | ||
| // Get sign(x) * min_normal. | ||
| FPBits eps_bits = FPBits::min_normal(); | ||
| eps_bits.set_sign(xbits.sign()); | ||
| double eps = eps_bits.get_val(); | ||
| double normalize_const = (x_exp == 0) ? eps : 0.0; | ||
| double scaled_normal = | ||
| fputil::multiply_add(x + normalize_const, 0x1.0p54, eps); | ||
| return fputil::multiply_add(scaled_normal, 0x1.0p-54, -normalize_const); | ||
| #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS | ||
| } | ||
|
|
||
| #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS | ||
| return x * asin_eval(x * x); | ||
| #else | ||
| unsigned idx; | ||
| DoubleDouble x_sq = fputil::exact_mult(x, x); | ||
| double err = x * 0x1.0p-51; | ||
| // Polynomial approximation: | ||
| // p ~ asin(x)/x | ||
|
|
||
| DoubleDouble p = asin_eval(x_sq, idx, err); | ||
| // asin(x) ~ x * (ASIN_COEFFS[idx][0] + p) | ||
| DoubleDouble r0 = fputil::exact_mult(x, p.hi); | ||
| double r_lo = fputil::multiply_add(x, p.lo, r0.lo); | ||
|
|
||
| // Ziv's accuracy test. | ||
|
|
||
| double r_upper = r0.hi + (r_lo + err); | ||
| double r_lower = r0.hi + (r_lo - err); | ||
|
|
||
| if (LIBC_LIKELY(r_upper == r_lower)) | ||
| return r_upper; | ||
|
|
||
| // Ziv's accuracy test failed, perform 128-bit calculation. | ||
|
|
||
| // Recalculate mod 1/64. | ||
| idx = static_cast<unsigned>(fputil::nearest_integer(x_sq.hi * 0x1.0p6)); | ||
|
|
||
| // Get x^2 - idx/21 exactly. When FMA is available, double-double | ||
| // multiplication will be correct for all rounding modes. Otherwise we use | ||
| // Float128 directly. | ||
| Float128 x_f128(x); | ||
|
|
||
| #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE | ||
| // u = x^2 - idx/64 | ||
| Float128 u_hi( | ||
| fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, x_sq.hi)); | ||
| Float128 u = fputil::quick_add(u_hi, Float128(x_sq.lo)); | ||
| #else | ||
| Float128 x_sq_f128 = fputil::quick_mul(x_f128, x_f128); | ||
| Float128 u = fputil::quick_add( | ||
| x_sq_f128, Float128(static_cast<double>(idx) * (-0x1.0p-6))); | ||
| #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE | ||
|
|
||
| Float128 p_f128 = asin_eval(u, idx); | ||
| Float128 r = fputil::quick_mul(x_f128, p_f128); | ||
|
|
||
| return static_cast<double>(r); | ||
| #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS | ||
| } | ||
| // |x| >= 0.5 | ||
|
|
||
| double x_abs = xbits.abs().get_val(); | ||
|
|
||
| // Maintaining the sign: | ||
| constexpr double SIGN[2] = {1.0, -1.0}; | ||
| double x_sign = SIGN[xbits.is_neg()]; | ||
|
|
||
| // |x| >= 1 | ||
| if (LIBC_UNLIKELY(x_exp >= FPBits::EXP_BIAS)) { | ||
| // x = +-1, asin(x) = +- pi/2 | ||
| if (x_abs == 1.0) { | ||
| // return +- pi/2 | ||
| return fputil::multiply_add(x_sign, PI_OVER_TWO.hi, | ||
| x_sign * PI_OVER_TWO.lo); | ||
| } | ||
| // |x| > 1, return NaN. | ||
| if (xbits.is_finite()) { | ||
| fputil::set_errno_if_required(EDOM); | ||
| fputil::raise_except_if_required(FE_INVALID); | ||
| } else if (xbits.is_signaling_nan()) { | ||
| fputil::raise_except_if_required(FE_INVALID); | ||
| } | ||
| return FPBits::quiet_nan().get_val(); | ||
| } | ||
|
|
||
| // When |x| >= 0.5, we perform range reduction as follow: | ||
| // | ||
| // Assume further that 0.5 <= x < 1, and let: | ||
| // y = asin(x) | ||
| // We will use the double angle formula: | ||
| // cos(2y) = 1 - 2 sin^2(y) | ||
| // and the complement angle identity: | ||
| // x = sin(y) = cos(pi/2 - y) | ||
| // = 1 - 2 sin^2 (pi/4 - y/2) | ||
| // So: | ||
| // sin(pi/4 - y/2) = sqrt( (1 - x)/2 ) | ||
| // And hence: | ||
| // pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) ) | ||
| // Equivalently: | ||
| // asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) ) | ||
| // Let u = (1 - x)/2, then: | ||
| // asin(x) = pi/2 - 2 * asin( sqrt(u) ) | ||
| // Moreover, since 0.5 <= x < 1: | ||
| // 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5, | ||
| // And hence we can reuse the same polynomial approximation of asin(x) when | ||
| // |x| <= 0.5: | ||
| // asin(x) ~ pi/2 - 2 * sqrt(u) * P(u), | ||
|
|
||
| // u = (1 - |x|)/2 | ||
| double u = fputil::multiply_add(x_abs, -0.5, 0.5); | ||
| // v_hi + v_lo ~ sqrt(u). | ||
| // Let: | ||
| // h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi) | ||
| // Then: | ||
| // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) | ||
| // ~ v_hi + h / (2 * v_hi) | ||
| // So we can use: | ||
| // v_lo = h / (2 * v_hi). | ||
| // Then, | ||
| // asin(x) ~ pi/2 - 2*(v_hi + v_lo) * P(u) | ||
| double v_hi = fputil::sqrt<double>(u); | ||
|
|
||
| #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS | ||
| double p = asin_eval(u); | ||
| double r = x_sign * fputil::multiply_add(-2.0 * v_hi, p, PI_OVER_TWO.hi); | ||
| return r; | ||
| #else | ||
|
|
||
| #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE | ||
| double h = fputil::multiply_add(v_hi, -v_hi, u); | ||
| #else | ||
| DoubleDouble v_hi_sq = fputil::exact_mult(v_hi, v_hi); | ||
| double h = (u - v_hi_sq.hi) - v_hi_sq.lo; | ||
| #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE | ||
|
|
||
| // Scale v_lo and v_hi by 2 from the formula: | ||
| // vh = v_hi * 2 | ||
| // vl = 2*v_lo = h / v_hi. | ||
| double vh = v_hi * 2.0; | ||
| double vl = h / v_hi; | ||
|
|
||
| // Polynomial approximation: | ||
| // p ~ asin(sqrt(u))/sqrt(u) | ||
| unsigned idx; | ||
| double err = vh * 0x1.0p-51; | ||
|
|
||
| DoubleDouble p = asin_eval(DoubleDouble{0.0, u}, idx, err); | ||
|
|
||
| // Perform computations in double-double arithmetic: | ||
| // asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p) | ||
| DoubleDouble r0 = fputil::quick_mult(DoubleDouble{vl, vh}, p); | ||
| DoubleDouble r = fputil::exact_add(PI_OVER_TWO.hi, -r0.hi); | ||
|
|
||
| double r_lo = PI_OVER_TWO.lo - r0.lo + r.lo; | ||
|
|
||
| // Ziv's accuracy test. | ||
|
|
||
| #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE | ||
| double r_upper = fputil::multiply_add( | ||
| r.hi, x_sign, fputil::multiply_add(r_lo, x_sign, err)); | ||
| double r_lower = fputil::multiply_add( | ||
| r.hi, x_sign, fputil::multiply_add(r_lo, x_sign, -err)); | ||
| #else | ||
| r_lo *= x_sign; | ||
| r.hi *= x_sign; | ||
| double r_upper = r.hi + (r_lo + err); | ||
| double r_lower = r.hi + (r_lo - err); | ||
| #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE | ||
|
|
||
| if (LIBC_LIKELY(r_upper == r_lower)) | ||
| return r_upper; | ||
|
|
||
| // Ziv's accuracy test failed, we redo the computations in Float128. | ||
| // Recalculate mod 1/64. | ||
| idx = static_cast<unsigned>(fputil::nearest_integer(u * 0x1.0p6)); | ||
|
|
||
| // After the first step of Newton-Raphson approximating v = sqrt(u), we have | ||
| // that: | ||
| // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) | ||
| // v_lo = h / (2 * v_hi) | ||
| // With error: | ||
| // sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) ) | ||
| // = -h^2 / (2*v * (sqrt(u) + v)^2). | ||
| // Since: | ||
| // (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u, | ||
| // we can add another correction term to (v_hi + v_lo) that is: | ||
| // v_ll = -h^2 / (2*v_hi * 4u) | ||
| // = -v_lo * (h / 4u) | ||
| // = -vl * (h / 8u), | ||
| // making the errors: | ||
| // sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3) | ||
| // well beyond 128-bit precision needed. | ||
|
|
||
| // Get the rounding error of vl = 2 * v_lo ~ h / vh | ||
| // Get full product of vh * vl | ||
| #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE | ||
| double vl_lo = fputil::multiply_add(-v_hi, vl, h) / v_hi; | ||
| #else | ||
| DoubleDouble vh_vl = fputil::exact_mult(v_hi, vl); | ||
| double vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi; | ||
| #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE | ||
| // vll = 2*v_ll = -vl * (h / (4u)). | ||
| double t = h * (-0.25) / u; | ||
| double vll = fputil::multiply_add(vl, t, vl_lo); | ||
| // m_v = -(v_hi + v_lo + v_ll). | ||
| Float128 m_v = fputil::quick_add( | ||
| Float128(vh), fputil::quick_add(Float128(vl), Float128(vll))); | ||
| m_v.sign = Sign::NEG; | ||
|
|
||
| // Perform computations in Float128: | ||
| // asin(x) = pi/2 - (v_hi + v_lo + vll) * P(u). | ||
| Float128 y_f128(fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, u)); | ||
|
|
||
| Float128 p_f128 = asin_eval(y_f128, idx); | ||
| Float128 r0_f128 = fputil::quick_mul(m_v, p_f128); | ||
| Float128 r_f128 = fputil::quick_add(PI_OVER_TWO_F128, r0_f128); | ||
|
|
||
| if (xbits.is_neg()) | ||
| r_f128.sign = Sign::NEG; | ||
|
|
||
| return static_cast<double>(r_f128); | ||
| #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS | ||
| } | ||
|
|
||
| } // namespace LIBC_NAMESPACE_DECL | ||
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.