-
Notifications
You must be signed in to change notification settings - Fork 15.4k
[mlir][vector] Refactor createWriteOrMaskedWrite
#138137
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -1506,84 +1506,86 @@ static SmallVector<int64_t> getTiledPackShape(linalg::PackOp packOp, | |
| return applyPermutation(destShape, linalg::getPackInverseDestPerm(packOp)); | ||
| } | ||
|
|
||
| /// Creates a TransferWriteOp to write `input` into a newly initialized | ||
| /// output tensor. | ||
| /// Creates an optionally masked TransferWriteOp | ||
| /// | ||
| /// Given: | ||
| /// - an input vector to write, | ||
| /// - the mixed destination sizes for the output tensor, | ||
| /// - and the vector sizes used for vectorization (i.e., the leading N dims, | ||
| /// for some value of N), | ||
| /// | ||
| /// this function generates the following sequence of ops: | ||
| /// | ||
| /// %dest = tensor.empty(%destSizes) | ||
| /// %res = vector.transfer_write %input into %dest | ||
| /// Generates the following operation: | ||
| /// %res = vector.transfer_write %vectorToStore into %dest | ||
| /// | ||
| /// If the leading N dimensions of the destination tensor do not match | ||
| /// `inputVecSizesForLeadingDims` (where N = | ||
| /// rank(`inputVecSizesForLeadingDims`)), masking is applied to ensure | ||
| /// correctness: | ||
| /// `inputVecSizesForLeadingDims`, where= | ||
| /// * N = rank(`inputVecSizesForLeadingDims`)), | ||
| /// masking is applied to ensure correctness: | ||
| /// | ||
| /// %dest = tensor.empty(%destSizes) | ||
| /// %write = vector.transfer_write %input into %dest | ||
| /// %mask = vector.create_mask(%destSizes) | ||
| /// %write = vector.transfer_write %vectorToStore into %dest | ||
| /// %mask = vector.create_mask(%destShape) | ||
| /// %res = vector.mask %mask { %write } | ||
|
||
| /// | ||
| /// If `useInBoundsInsteadOfMasking` is set to `true`, the `in_bounds` attribute | ||
| /// is used instead of masking: | ||
| /// | ||
| /// %dest = tensor.empty(%destSizes) | ||
| /// %write = vector.transfer_write %vectorToStore into %dest | ||
| /// in_bounds_flags = (...) | ||
| /// %res = vector.transfer_write %input into %dest | ||
| /// {in_bounds = in_bounds_flags} | ||
| /// | ||
| /// NOTE: all write offsets are set to 0. | ||
| /// NOTE: All write offsets are set to 0. | ||
| /// TODO: Allow specyfying write offsets. | ||
| /// NOTE: When N < rank(input), the missing vector sizes are effectively | ||
| /// extracted from the trailing sizes of `destSizes`. This means those sizes | ||
| /// must be static. Supporting dynamic sizes will require the user to specify | ||
| /// the remaining vector sizes. This is left as a TODO. | ||
| /// must be static. | ||
| /// TODO: Support cases where an arbitrary dim is dynamic - this will require | ||
| /// specifying all the vector sizes. | ||
| static Operation * | ||
| createWriteOrMaskedWrite(OpBuilder &builder, Location loc, Value input, | ||
| SmallVector<OpFoldResult> destSizes, | ||
| createWriteOrMaskedWrite(OpBuilder &builder, Location loc, Value vectorToStore, | ||
| Value dest, | ||
| ArrayRef<int64_t> inputVecSizesForLeadingDims, | ||
| bool useInBoundsInsteadOfMasking = false) { | ||
|
|
||
| auto inputType = cast<VectorType>(input.getType()); | ||
| assert(inputType.getRank() == static_cast<int64_t>(destSizes.size()) && | ||
| ShapedType destType = cast<ShapedType>(dest.getType()); | ||
| assert(cast<VectorType>(vectorToStore.getType()).getRank() == | ||
| static_cast<int64_t>(destType.getRank()) && | ||
| "Rank mismatch!"); | ||
|
|
||
| Value dest = builder.create<tensor::EmptyOp>(loc, destSizes, | ||
| inputType.getElementType()); | ||
| int64_t rank = cast<ShapedType>(dest.getType()).getRank(); | ||
| auto zero = builder.create<arith::ConstantIndexOp>(loc, 0); | ||
| auto destShape = cast<ShapedType>(dest.getType()).getShape(); | ||
|
|
||
| // Compute the in_bounds attribute | ||
| SmallVector<bool> inBoundsVal(rank, true); | ||
| if (useInBoundsInsteadOfMasking) { | ||
| // In this case, assume that all the required vector sizes have been | ||
| // provided. | ||
| assert(inputVecSizesForLeadingDims.size() == destSizes.size() && | ||
| assert(inputVecSizesForLeadingDims.size() == | ||
| static_cast<size_t>(destType.getRank()) && | ||
| "Insufficient number of input vector sizes!"); | ||
| // Update the inBounds attribute. | ||
| for (unsigned i = 0; i < rank; i++) | ||
| inBoundsVal[i] = (destShape[i] == inputVecSizesForLeadingDims[i]) && | ||
| !ShapedType::isDynamic(destShape[i]); | ||
| } | ||
|
|
||
| // Generate the xfer_write Op | ||
| auto zero = builder.create<arith::ConstantIndexOp>(loc, 0); | ||
| Operation *write = builder.create<vector::TransferWriteOp>( | ||
| loc, | ||
| /*vector=*/input, | ||
| /*vector=*/vectorToStore, | ||
| /*source=*/dest, | ||
| /*indices=*/SmallVector<Value>(rank, zero), | ||
| /*inBounds=*/inBoundsVal); | ||
| assert(llvm::none_of( | ||
| destShape.drop_front(inputVecSizesForLeadingDims.size()), | ||
| [](int64_t size) { return size == ShapedType::kDynamic; }) && | ||
| "Only dims aligned with inputVecSizesForLeadingDims may be dynamic"); | ||
|
|
||
| // If masking is disabled, exit. | ||
| if (useInBoundsInsteadOfMasking) | ||
| return write; | ||
|
|
||
| // Check if masking is needed. | ||
| bool needMaskForWrite = | ||
| !llvm::equal(inputVecSizesForLeadingDims, | ||
| destShape.take_front(inputVecSizesForLeadingDims.size())); | ||
|
|
||
| // If masking is needed, generate the mask and mask the operation. | ||
| if (needMaskForWrite) { | ||
| SmallVector<int64_t> writeMaskShape; | ||
| writeMaskShape.append(inputVecSizesForLeadingDims.begin(), | ||
|
|
@@ -1592,10 +1594,11 @@ createWriteOrMaskedWrite(OpBuilder &builder, Location loc, Value input, | |
| inputVecSizesForLeadingDims.size(), | ||
| destShape.end()); | ||
| auto writeMaskType = VectorType::get(writeMaskShape, builder.getI1Type()); | ||
| Value maskForWrite = | ||
| builder.create<vector::CreateMaskOp>(loc, writeMaskType, destSizes); | ||
| Value maskForWrite = builder.create<vector::CreateMaskOp>( | ||
| loc, writeMaskType, tensor::getMixedSizes(builder, loc, dest)); | ||
| write = mlir::vector::maskOperation(builder, write, maskForWrite); | ||
| } | ||
|
|
||
| return write; | ||
| } | ||
|
|
||
|
|
@@ -1693,9 +1696,11 @@ vectorizeAsTensorPackOp(RewriterBase &rewriter, linalg::PackOp packOp, | |
| loc, shapeCastOp.getResult(), destPermutation); | ||
|
|
||
| // Create TransferWriteOp. | ||
| Value dest = rewriter.create<tensor::EmptyOp>( | ||
| loc, reifiedReturnShapes[0], | ||
| transposeOp.getResult().getType().getElementType()); | ||
| Operation *write = | ||
| createWriteOrMaskedWrite(rewriter, loc, transposeOp.getResult(), | ||
| /*destSizes=*/reifiedReturnShapes[0], | ||
| createWriteOrMaskedWrite(rewriter, loc, transposeOp.getResult(), dest, | ||
| /*inputVecSizesForLeadingDims=*/inputVectorSizes, | ||
| /*useInBoundsInsteadOfMasking=*/false); | ||
| newResults.push_back(write->getResult(0)); | ||
|
|
@@ -1830,10 +1835,13 @@ vectorizeAsTensorUnpackOp(RewriterBase &rewriter, linalg::UnPackOp unpackOp, | |
| unpackOp.getDestType().hasStaticShape() | ||
| ? vectorSizes | ||
| : shapeCastOp.getResultVectorType().getShape()); | ||
| Operation *write = createWriteOrMaskedWrite( | ||
| rewriter, loc, shapeCastOp.getResult(), /*destSizes=*/reifiedRetShapes[0], | ||
| /*inputVecSizesForLeadingDims=*/writeVectorSizes, | ||
| useInBoundsInsteadOfMasking); | ||
| Value dest = rewriter.create<tensor::EmptyOp>( | ||
| loc, reifiedRetShapes[0], | ||
| shapeCastOp.getResult().getType().getElementType()); | ||
| Operation *write = | ||
| createWriteOrMaskedWrite(rewriter, loc, shapeCastOp.getResult(), dest, | ||
| /*inputVecSizesForLeadingDims=*/writeVectorSizes, | ||
| useInBoundsInsteadOfMasking); | ||
| newResults.push_back(write->getResult(0)); | ||
| return success(); | ||
| } | ||
|
|
@@ -1861,10 +1869,14 @@ vectorizeAsTensorPadOp(RewriterBase &rewriter, tensor::PadOp padOp, | |
| auto maskedRead = vector::createReadOrMaskedRead( | ||
| rewriter, loc, padOp.getSource(), inputVectorSizes, padValue, | ||
| /*useInBoundsInsteadOfMasking=*/false); | ||
| Operation *write = createWriteOrMaskedWrite( | ||
| rewriter, loc, maskedRead, reifiedReturnShapes[0], | ||
| /*inputVecSizesForLeadingDims=*/inputVectorSizes, | ||
| /*useInBoundsInsteadOfMasking=*/false); | ||
|
|
||
| // Create Xfer write Op | ||
| Value dest = rewriter.create<tensor::EmptyOp>( | ||
| loc, reifiedReturnShapes[0], padOp.getResultType().getElementType()); | ||
| Operation *write = | ||
| createWriteOrMaskedWrite(rewriter, loc, maskedRead, dest, | ||
| /*inputVecSizesForLeadingDims=*/inputVectorSizes, | ||
| /*useInBoundsInsteadOfMasking=*/false); | ||
| newResults.push_back(write->getResult(0)); | ||
| return success(); | ||
| } | ||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -641,7 +641,9 @@ func.func @test_masked_vectorize_dynamic_pad( | |
| // CHECK-SAME: } : vector<2x4xi1> -> vector<2x4xf32> | ||
| // CHECK-DAG: %[[empty:.*]] = tensor.empty(%[[res_d0]], %[[res_d1]]) : tensor<?x?xf32> | ||
| // CHECK-DAG: %[[c0_3:.*]] = arith.constant 0 : index | ||
| // CHECK: %[[mask_2:.*]] = vector.create_mask %[[res_d0]], %[[res_d1]] : vector<2x4xi1> | ||
| // CHECK-DAG: %[[d2:.*]] = tensor.dim %[[empty]], {{.*}} : tensor<?x?xf32> | ||
| // CHECK-DAG: %[[d3:.*]] = tensor.dim %[[empty]], {{.*}} : tensor<?x?xf32> | ||
| // CHECK: %[[mask_2:.*]] = vector.create_mask %[[d2]], %[[d3]] : vector<2x4xi1> | ||
| // CHECK: %[[masked_write:.*]] = vector.mask %[[mask_2]] { | ||
| // CHECK-SAME: vector.transfer_write %[[masked_read]], %[[empty]][%[[c0_3]], %[[c0_3]]] | ||
| // CHECK-SAME: {in_bounds = [true, true]} : vector<2x4xf32>, tensor<?x?xf32> | ||
|
|
@@ -800,7 +802,9 @@ func.func @test_vectorize_dynamic_pack(%arg0: tensor<?x?xf32>, %arg1: tensor<?x? | |
| // CHECK-DAG: %[[c16:.*]] = arith.constant 16 : index | ||
| // CHECK-DAG: %[[c2:.*]] = arith.constant 2 : index | ||
| // CHECK-DAG: %[[empty:.*]] = tensor.empty(%[[d0]], %[[d1]]) : tensor<?x?x16x2xf32> | ||
| // CHECK: %[[mask_0:.*]] = vector.create_mask %[[d0]], %[[d1]], %[[c16]], %[[c2]] : vector<4x1x16x2xi1> | ||
| // CHECK-DAG: %[[d2:.*]] = tensor.dim %[[empty]], {{.*}} : tensor<?x?x16x2xf32> | ||
| // CHECK-DAG: %[[d3:.*]] = tensor.dim %[[empty]], {{.*}} : tensor<?x?x16x2xf32> | ||
| // CHECK: %[[mask_0:.*]] = vector.create_mask %[[d2]], %[[d3]], %[[c16]], %[[c2]] : vector<4x1x16x2xi1> | ||
| // CHECK: %[[masked_write:.*]] = vector.mask %[[mask_0]] { | ||
| // CHECK-SAME: vector.transfer_write %[[transpose]], %[[empty]][%[[c0_2]], %[[c0_2]], %[[c0_2]], %[[c0_2]]] | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Tests are correct so it looks like the issue is just in the doc. |
||
| // CHECK-SAME: {in_bounds = [true, true, true, true]} : vector<4x1x16x2xf32>, tensor<?x?x16x2xf32> | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Seems like there may be some typo here. Did you mean to say
where N = rank(...?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for pointing this out 🙏🏻 Fixed :)