Skip to content
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 6 additions & 2 deletions mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -1673,7 +1673,9 @@ def Vector_TransferWriteOp :
let hasVerifier = 1;
}

def Vector_LoadOp : Vector_Op<"load"> {
def Vector_LoadOp : Vector_Op<"load", [
DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
]> {
let summary = "reads an n-D slice of memory into an n-D vector";
let description = [{
The 'vector.load' operation reads an n-D slice of memory into an n-D
Expand Down Expand Up @@ -1759,7 +1761,9 @@ def Vector_LoadOp : Vector_Op<"load"> {
"$base `[` $indices `]` attr-dict `:` type($base) `,` type($result)";
}

def Vector_StoreOp : Vector_Op<"store"> {
def Vector_StoreOp : Vector_Op<"store", [
DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
]> {
let summary = "writes an n-D vector to an n-D slice of memory";
let description = [{
The 'vector.store' operation writes an n-D vector to an n-D slice of memory.
Expand Down
8 changes: 8 additions & 0 deletions mlir/lib/Dialect/Vector/IR/VectorOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5266,6 +5266,10 @@ OpFoldResult LoadOp::fold(FoldAdaptor) {
return OpFoldResult();
}

std::optional<SmallVector<int64_t, 4>> LoadOp::getShapeForUnroll() {
return llvm::to_vector<4>(getVectorType().getShape());
}

//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
Expand Down Expand Up @@ -5301,6 +5305,10 @@ LogicalResult StoreOp::fold(FoldAdaptor adaptor,
return memref::foldMemRefCast(*this);
}

std::optional<SmallVector<int64_t, 4>> StoreOp::getShapeForUnroll() {
return llvm::to_vector<4>(getVectorType().getShape());
}

//===----------------------------------------------------------------------===//
// MaskedLoadOp
//===----------------------------------------------------------------------===//
Expand Down
128 changes: 122 additions & 6 deletions mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,28 @@ static SmallVector<Value> sliceTransferIndices(ArrayRef<int64_t> elementOffsets,
return slicedIndices;
}

// Compute the new indices by adding `offsets` to `originalIndices`.
// If m < n (m = offsets.size(), n = originalIndices.size()),
// then only the trailing m values in `originalIndices` are updated.
static SmallVector<Value> computeIndices(PatternRewriter &rewriter,
Location loc,
ArrayRef<Value> originalIndices,
ArrayRef<int64_t> offsets) {
assert(offsets.size() <= originalIndices.size() &&
"Offsets should not exceed the number of original indices");
SmallVector<Value> indices(originalIndices);

auto start = indices.size() - offsets.size();
for (auto [i, offset] : llvm::enumerate(offsets)) {
if (offset != 0) {
indices[start + i] = rewriter.create<arith::AddIOp>(
loc, originalIndices[start + i],
rewriter.create<arith::ConstantIndexOp>(loc, offset));
}
}
return indices;
}

// Clones `op` into a new operations that takes `operands` and returns
// `resultTypes`.
static Operation *cloneOpWithOperandsAndTypes(OpBuilder &builder, Location loc,
Expand Down Expand Up @@ -631,6 +653,100 @@ struct UnrollGatherPattern : public OpRewritePattern<vector::GatherOp> {
vector::UnrollVectorOptions options;
};

struct UnrollLoadPattern : public OpRewritePattern<vector::LoadOp> {
UnrollLoadPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::LoadOp>(context, benefit), options(options) {}

LogicalResult matchAndRewrite(vector::LoadOp loadOp,
PatternRewriter &rewriter) const override {
VectorType vecType = loadOp.getVectorType();
if (vecType.getRank() <= 1)
return failure();

auto targetShape = getTargetShape(options, loadOp);
if (!targetShape)
return failure();

Location loc = loadOp.getLoc();
ArrayRef<int64_t> originalShape = vecType.getShape();
SmallVector<int64_t> strides(targetShape->size(), 1);

Value result = rewriter.create<arith::ConstantOp>(
loc, vecType, rewriter.getZeroAttr(vecType));

SmallVector<Value> originalIndices(loadOp.getIndices().begin(),
loadOp.getIndices().end());

SmallVector<int64_t> loopOrder =
getUnrollOrder(originalShape.size(), loadOp, options);

auto targetVecType =
VectorType::get(*targetShape, vecType.getElementType());

for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(originalShape, *targetShape, loopOrder)) {
SmallVector<Value> indices =
computeIndices(rewriter, loc, originalIndices, offsets);
Value slice = rewriter.create<vector::LoadOp>(loc, targetVecType,
loadOp.getBase(), indices);
result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
loc, slice, result, offsets, strides);
}
rewriter.replaceOp(loadOp, result);
return success();
}

private:
vector::UnrollVectorOptions options;
};

struct UnrollStorePattern : public OpRewritePattern<vector::StoreOp> {
UnrollStorePattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::StoreOp>(context, benefit), options(options) {}

LogicalResult matchAndRewrite(vector::StoreOp storeOp,
PatternRewriter &rewriter) const override {
VectorType vecType = storeOp.getVectorType();
if (vecType.getRank() <= 1)
return failure();

auto targetShape = getTargetShape(options, storeOp);
if (!targetShape)
return failure();

Location loc = storeOp.getLoc();
ArrayRef<int64_t> originalShape = vecType.getShape();
SmallVector<int64_t> strides(targetShape->size(), 1);

Value base = storeOp.getBase();
Value vector = storeOp.getValueToStore();

SmallVector<Value> originalIndices(storeOp.getIndices().begin(),
storeOp.getIndices().end());

SmallVector<int64_t> loopOrder =
getUnrollOrder(originalShape.size(), storeOp, options);

for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(originalShape, *targetShape, loopOrder)) {
SmallVector<Value> indices =
computeIndices(rewriter, loc, originalIndices, offsets);
Value slice = rewriter.createOrFold<vector::ExtractStridedSliceOp>(
loc, vector, offsets, *targetShape, strides);
rewriter.create<vector::StoreOp>(loc, slice, base, indices);
}
rewriter.eraseOp(storeOp);
return success();
}

private:
vector::UnrollVectorOptions options;
};

struct UnrollBroadcastPattern : public OpRewritePattern<vector::BroadcastOp> {
UnrollBroadcastPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
Expand Down Expand Up @@ -699,10 +815,10 @@ struct UnrollBroadcastPattern : public OpRewritePattern<vector::BroadcastOp> {
void mlir::vector::populateVectorUnrollPatterns(
RewritePatternSet &patterns, const UnrollVectorOptions &options,
PatternBenefit benefit) {
patterns
.add<UnrollTransferReadPattern, UnrollTransferWritePattern,
UnrollContractionPattern, UnrollElementwisePattern,
UnrollReductionPattern, UnrollMultiReductionPattern,
UnrollTransposePattern, UnrollGatherPattern, UnrollBroadcastPattern>(
patterns.getContext(), options, benefit);
patterns.add<UnrollTransferReadPattern, UnrollTransferWritePattern,
UnrollContractionPattern, UnrollElementwisePattern,
UnrollReductionPattern, UnrollMultiReductionPattern,
UnrollTransposePattern, UnrollGatherPattern, UnrollLoadPattern,
UnrollStorePattern, UnrollBroadcastPattern>(
patterns.getContext(), options, benefit);
}
42 changes: 42 additions & 0 deletions mlir/test/Dialect/Vector/vector-unroll-options.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -378,3 +378,45 @@ func.func @vector_broadcast_with_tailing_unit_dim(%v: vector<4x1xf32>) -> vector
// CHECK: [[b3:%.+]] = vector.broadcast [[s3]] : vector<2x1xf32> to vector<2x2xf32>
// CHECK: [[r3:%.+]] = vector.insert_strided_slice [[b3]], [[r2]] {offsets = [2, 2], strides = [1, 1]} : vector<2x2xf32> into vector<4x4xf32>
// CHECK: return [[r3]] : vector<4x4xf32>


func.func @vector_load_2D(%mem: memref<4x4xf16>) -> vector<4x4xf16> {
%c0 = arith.constant 0 : index
%0 = vector.load %mem[%c0, %c0] : memref<4x4xf16>, vector<4x4xf16>
return %0 : vector<4x4xf16>
}

// CHECK-LABEL: func.func @vector_load_2D(
// CHECK-SAME: %[[ARG:.*]]: memref<4x4xf16>) -> vector<4x4xf16> {
// CHECK: %[[C2:.*]] = arith.constant 2 : index
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[CST:.*]] = arith.constant dense<0.000000e+00> : vector<4x4xf16>
// CHECK: %[[V0:.*]] = vector.load %[[ARG]][%[[C0]], %[[C0]]] : memref<4x4xf16>, vector<2x2xf16>
// CHECK: %[[V1:.*]] = vector.insert_strided_slice %[[V0]], %[[CST]] {offsets = [0, 0], strides = [1, 1]} : vector<2x2xf16> into vector<4x4xf16>
// CHECK: %[[V2:.*]] = vector.load %[[ARG]][%[[C0]], %[[C2]]] : memref<4x4xf16>, vector<2x2xf16>
// CHECK: %[[V3:.*]] = vector.insert_strided_slice %[[V2]], %[[V1]] {offsets = [0, 2], strides = [1, 1]} : vector<2x2xf16> into vector<4x4xf16>
// CHECK: %[[V4:.*]] = vector.load %[[ARG]][%[[C2]], %[[C0]]] : memref<4x4xf16>, vector<2x2xf16>
// CHECK: %[[V5:.*]] = vector.insert_strided_slice %[[V4]], %[[V3]] {offsets = [2, 0], strides = [1, 1]} : vector<2x2xf16> into vector<4x4xf16>
// CHECK: %[[V6:.*]] = vector.load %[[ARG]][%[[C2]], %[[C2]]] : memref<4x4xf16>, vector<2x2xf16>
// CHECK: %[[V7:.*]] = vector.insert_strided_slice %[[V6]], %[[V5]] {offsets = [2, 2], strides = [1, 1]} : vector<2x2xf16> into vector<4x4xf16>
// CHECK: return %[[V7]] : vector<4x4xf16>


func.func @vector_store_2D(%mem: memref<4x4xf16>, %v: vector<4x4xf16>) {
%c0 = arith.constant 0 : index
vector.store %v, %mem[%c0, %c0] : memref<4x4xf16>, vector<4x4xf16>
return
}

// CHECK-LABEL: func.func @vector_store_2D(
// CHECK-SAME: %[[ARG0:.*]]: memref<4x4xf16>, %[[ARG1:.*]]: vector<4x4xf16>) {
// CHECK: %[[C2:.*]] = arith.constant 2 : index
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[V0:.*]] = vector.extract_strided_slice %[[ARG1]] {offsets = [0, 0], sizes = [2, 2], strides = [1, 1]} : vector<4x4xf16> to vector<2x2xf16>
// CHECK: vector.store %[[V0]], %[[ARG0]][%[[C0]], %[[C0]]] : memref<4x4xf16>, vector<2x2xf16>
// CHECK: %[[V1:.*]] = vector.extract_strided_slice %[[ARG1]] {offsets = [0, 2], sizes = [2, 2], strides = [1, 1]} : vector<4x4xf16> to vector<2x2xf16>
// CHECK: vector.store %[[V1]], %[[ARG0]][%[[C0]], %[[C2]]] : memref<4x4xf16>, vector<2x2xf16>
// CHECK: %[[V2:.*]] = vector.extract_strided_slice %[[ARG1]] {offsets = [2, 0], sizes = [2, 2], strides = [1, 1]} : vector<4x4xf16> to vector<2x2xf16>
// CHECK: vector.store %[[V2]], %[[ARG0]][%[[C2]], %[[C0]]] : memref<4x4xf16>, vector<2x2xf16>
// CHECK: %[[V3:.*]] = vector.extract_strided_slice %[[ARG1]] {offsets = [2, 2], sizes = [2, 2], strides = [1, 1]} : vector<4x4xf16> to vector<2x2xf16>
// CHECK: vector.store %[[V3]], %[[ARG0]][%[[C2]], %[[C2]]] : memref<4x4xf16>, vector<2x2xf16>
3 changes: 2 additions & 1 deletion mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,8 @@ struct TestVectorUnrollingPatterns
.setFilterConstraint([](Operation *op) {
return success(
isa<arith::AddFOp, vector::FMAOp, vector::MultiDimReductionOp,
vector::BroadcastOp>(op));
vector::BroadcastOp, vector::LoadOp, vector::StoreOp>(
op));
}));
populateVectorUnrollPatterns(
patterns, UnrollVectorOptions()
Expand Down
Loading