Skip to content

Conversation

@matthias-springer
Copy link
Member

Do not access the erased cf.cond_br operation in the lowering pattern. That won't work anymore in a One-Shot Dialect Conversion and triggers a use-after-free sanitizer error.

After the One-Shot Dialect Conversion refactoring, a ConversionPatternRewriter will behave more like a normal PatternRewriter.

@llvmbot
Copy link
Member

llvmbot commented Jul 12, 2025

@llvm/pr-subscribers-mlir

Author: Matthias Springer (matthias-springer)

Changes

Do not access the erased cf.cond_br operation in the lowering pattern. That won't work anymore in a One-Shot Dialect Conversion and triggers a use-after-free sanitizer error.

After the One-Shot Dialect Conversion refactoring, a ConversionPatternRewriter will behave more like a normal PatternRewriter.


Full diff: https://github.com/llvm/llvm-project/pull/148358.diff

1 Files Affected:

  • (modified) mlir/lib/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.cpp (+7-10)
diff --git a/mlir/lib/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.cpp b/mlir/lib/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.cpp
index 88a8b7fb185c5..716ab140ad6c7 100644
--- a/mlir/lib/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.cpp
+++ b/mlir/lib/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.cpp
@@ -138,11 +138,12 @@ struct BranchOpLowering : public ConvertOpToLLVMPattern<cf::BranchOp> {
                           TypeRange(adaptor.getOperands()));
     if (failed(convertedBlock))
       return failure();
+    auto attrs = op->getAttrDictionary();
     Operation *newOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
         op, adaptor.getOperands(), *convertedBlock);
     // TODO: We should not just forward all attributes like that. But there are
     // existing Flang tests that depend on this behavior.
-    newOp->setAttrs(op->getAttrDictionary());
+    newOp->setAttrs(attrs);
     return success();
   }
 };
@@ -166,18 +167,14 @@ struct CondBranchOpLowering : public ConvertOpToLLVMPattern<cf::CondBranchOp> {
                           TypeRange(adaptor.getFalseDestOperands()));
     if (failed(convertedFalseBlock))
       return failure();
+    auto attrs = op->getAttrDictionary();
     auto newOp = rewriter.replaceOpWithNewOp<LLVM::CondBrOp>(
-        op, adaptor.getCondition(), *convertedTrueBlock,
-        adaptor.getTrueDestOperands(), *convertedFalseBlock,
-        adaptor.getFalseDestOperands());
-    ArrayRef<int32_t> weights = op.getWeights();
-    if (!weights.empty()) {
-      newOp.setWeights(weights);
-      op.removeBranchWeightsAttr();
-    }
+        op, adaptor.getCondition(), adaptor.getTrueDestOperands(),
+        adaptor.getFalseDestOperands(), op.getBranchWeightsAttr(),
+        *convertedTrueBlock, *convertedFalseBlock);
     // TODO: We should not just forward all attributes like that. But there are
     // existing Flang tests that depend on this behavior.
-    newOp->setAttrs(op->getAttrDictionary());
+    newOp->setAttrs(attrs);
     return success();
   }
 };

Copy link
Member

@zero9178 zero9178 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM!

@matthias-springer matthias-springer merged commit 96d57de into main Jul 12, 2025
5 checks passed
@matthias-springer matthias-springer deleted the users/matthias-springer/cf_cond_br_erase branch July 12, 2025 14:15
@llvm-ci
Copy link
Collaborator

llvm-ci commented Jul 12, 2025

LLVM Buildbot has detected a new failure on builder mlir-nvidia running on mlir-nvidia while building mlir at step 7 "test-build-check-mlir-build-only-check-mlir".

Full details are available at: https://lab.llvm.org/buildbot/#/builders/138/builds/15986

Here is the relevant piece of the build log for the reference
Step 7 (test-build-check-mlir-build-only-check-mlir) failure: test (failure)
******************** TEST 'MLIR :: Integration/GPU/CUDA/async.mlir' FAILED ********************
Exit Code: 1

Command Output (stdout):
--
# RUN: at line 1
/vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt /vol/worker/mlir-nvidia/mlir-nvidia/llvm.src/mlir/test/Integration/GPU/CUDA/async.mlir  | /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt -gpu-kernel-outlining  | /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt -pass-pipeline='builtin.module(gpu.module(strip-debuginfo,convert-gpu-to-nvvm),nvvm-attach-target)'  | /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt -gpu-async-region -gpu-to-llvm -reconcile-unrealized-casts -gpu-module-to-binary="format=fatbin"  | /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt -async-to-async-runtime -async-runtime-ref-counting  | /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt -convert-async-to-llvm -convert-func-to-llvm -convert-arith-to-llvm -convert-cf-to-llvm -reconcile-unrealized-casts  | /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-runner    --shared-libs=/vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/lib/libmlir_cuda_runtime.so    --shared-libs=/vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/lib/libmlir_async_runtime.so    --shared-libs=/vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/lib/libmlir_runner_utils.so    --entry-point-result=void -O0  | /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/FileCheck /vol/worker/mlir-nvidia/mlir-nvidia/llvm.src/mlir/test/Integration/GPU/CUDA/async.mlir
# executed command: /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt /vol/worker/mlir-nvidia/mlir-nvidia/llvm.src/mlir/test/Integration/GPU/CUDA/async.mlir
# executed command: /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt -gpu-kernel-outlining
# executed command: /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt '-pass-pipeline=builtin.module(gpu.module(strip-debuginfo,convert-gpu-to-nvvm),nvvm-attach-target)'
# executed command: /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt -gpu-async-region -gpu-to-llvm -reconcile-unrealized-casts -gpu-module-to-binary=format=fatbin
# executed command: /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt -async-to-async-runtime -async-runtime-ref-counting
# executed command: /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-opt -convert-async-to-llvm -convert-func-to-llvm -convert-arith-to-llvm -convert-cf-to-llvm -reconcile-unrealized-casts
# executed command: /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/mlir-runner --shared-libs=/vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/lib/libmlir_cuda_runtime.so --shared-libs=/vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/lib/libmlir_async_runtime.so --shared-libs=/vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/lib/libmlir_runner_utils.so --entry-point-result=void -O0
# .---command stderr------------
# | 'cuStreamWaitEvent(stream, event, 0)' failed with 'CUDA_ERROR_CONTEXT_IS_DESTROYED'
# | 'cuEventDestroy(event)' failed with 'CUDA_ERROR_CONTEXT_IS_DESTROYED'
# | 'cuStreamWaitEvent(stream, event, 0)' failed with 'CUDA_ERROR_CONTEXT_IS_DESTROYED'
# | 'cuEventDestroy(event)' failed with 'CUDA_ERROR_CONTEXT_IS_DESTROYED'
# | 'cuStreamWaitEvent(stream, event, 0)' failed with 'CUDA_ERROR_CONTEXT_IS_DESTROYED'
# | 'cuStreamWaitEvent(stream, event, 0)' failed with 'CUDA_ERROR_CONTEXT_IS_DESTROYED'
# | 'cuEventDestroy(event)' failed with 'CUDA_ERROR_CONTEXT_IS_DESTROYED'
# | 'cuEventDestroy(event)' failed with 'CUDA_ERROR_CONTEXT_IS_DESTROYED'
# | 'cuEventSynchronize(event)' failed with 'CUDA_ERROR_CONTEXT_IS_DESTROYED'
# | 'cuEventDestroy(event)' failed with 'CUDA_ERROR_CONTEXT_IS_DESTROYED'
# `-----------------------------
# executed command: /vol/worker/mlir-nvidia/mlir-nvidia/llvm.obj/bin/FileCheck /vol/worker/mlir-nvidia/mlir-nvidia/llvm.src/mlir/test/Integration/GPU/CUDA/async.mlir
# .---command stderr------------
# | /vol/worker/mlir-nvidia/mlir-nvidia/llvm.src/mlir/test/Integration/GPU/CUDA/async.mlir:68:12: error: CHECK: expected string not found in input
# |  // CHECK: [84, 84]
# |            ^
# | <stdin>:1:1: note: scanning from here
# | Unranked Memref base@ = 0x57ef87ce3b00 rank = 1 offset = 0 sizes = [2] strides = [1] data = 
# | ^
# | <stdin>:2:1: note: possible intended match here
# | [42, 42]
# | ^
# | 
# | Input file: <stdin>
# | Check file: /vol/worker/mlir-nvidia/mlir-nvidia/llvm.src/mlir/test/Integration/GPU/CUDA/async.mlir
# | 
# | -dump-input=help explains the following input dump.
# | 
# | Input was:
# | <<<<<<
# |             1: Unranked Memref base@ = 0x57ef87ce3b00 rank = 1 offset = 0 sizes = [2] strides = [1] data =  
# | check:68'0     X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ error: no match found
# |             2: [42, 42] 
# | check:68'0     ~~~~~~~~~
# | check:68'1     ?         possible intended match
...

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

Projects

None yet

Development

Successfully merging this pull request may close these issues.

5 participants