-
Notifications
You must be signed in to change notification settings - Fork 15.4k
[mlir][linalg] Fix to Elementwise Fusion when preserving results #149843
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
In the linalg ElementwiseOpFusion transform, a pre-requisite for the fusion between a producer and consumer op is that the producer's output indexing map associated to the result to be fused must be invertible (e.g. a simple permutation). Before this patch, only the first output indexing map was being checked; this bug produced issues when the operand to fuse was not the 1st result of the producer op. For example, this situation arises when the producer op has multiple results because it's the result of previous fusions where the original result had been preserved: in these cases, the pass ought to check the indexing map of the result being fused, which is not necessarily the 1st one. Signed-off-by: Fabrizio Indirli <[email protected]>
|
@llvm/pr-subscribers-mlir-linalg @llvm/pr-subscribers-mlir Author: None (fabrizio-indirli) ChangesIn the linalg ElementwiseOpFusion transform, a pre-requisite for the fusion between a producer and consumer op is that the producer's output indexing map associated to the result to be fused must be invertible (e.g. a simple permutation). Full diff: https://github.com/llvm/llvm-project/pull/149843.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
index f97ed3d6d5111..7bffac5425f8f 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
@@ -172,8 +172,9 @@ bool mlir::linalg::areElementwiseOpsFusable(OpOperand *fusedOperand) {
// Finally the index_map for the result must be invertible. For now just
// verify it is a permutation.
+ auto producerResult = cast<OpResult>(fusedOperand->get());
AffineMap producerResultIndexMap =
- producer.getMatchingIndexingMap(producer.getDpsInitOperand(0));
+ producer.getIndexingMapMatchingResult(producerResult);
if (!producerResultIndexMap.isPermutation())
return false;
diff --git a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
index 66fc55fadf8fa..bc55c12c02f29 100644
--- a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
+++ b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
@@ -1014,3 +1014,69 @@ module {
// CHECK-DAG: %[[T3:.+]] = arith.addf %[[T2]], %[[B1]]
// CHECK: linalg.yield %[[T3]] : f32
// CHECK: return %[[GENERIC]]
+
+// -----
+
+// In this test we expect the first two linalg.generic operations to be fused into one, but the third one (the matmul) to remain separate.
+// The reason is that when the pattern is applied the 1st time, the fusion of the first two operations produces a fused operation with
+// an additional result and ana dditional output indexing map that is not a permutation / not invertible.
+// The fused op will still produce also the original result (and its output indexing map), which is preserved because the new indexing map
+// is not invertible. Thus the fused op will have 2 results, but only the 2nd one will be used by the following matmul op as an input argument.
+// When trying to apply the fusion pattern again, the matmul op won't be fused because the operand to fuse was not produced with an invertible indexing map.
+
+#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+#map1 = affine_map<(d0, d1, d2, d3) -> (d0 * 4 + d1 * 2 + d2 + d3, 0, 0, 0)>
+#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d6)>
+#map3 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d3, d4, d5, d6)>
+#map4 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3, d4, d5)>
+module {
+ func.func @fuse_only_as_long_as_result_map_is_permutation(%arg0: tensor<1x1x2x1xf32>, %arg1: tensor<1x1x2x1xf32>) -> tensor<1x1x2x4xf32> {
+ %c2 = arith.constant 2 : index
+ %c1 = arith.constant 1 : index
+ %cst = arith.constant 0.000000e+00 : f32
+ %c0 = arith.constant 0 : index
+ %0 = tensor.empty() : tensor<1x2x2x1xf32>
+ %1 = linalg.generic {indexing_maps = [#map], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} outs(%0 : tensor<1x2x2x1xf32>) {
+ ^bb0(%out: f32):
+ %6 = linalg.index 1 : index
+ %7 = linalg.index 2 : index
+ %8 = arith.cmpi ult, %6, %c1 : index
+ %9 = arith.cmpi ult, %7, %c2 : index
+ %10 = arith.andi %8, %9 : i1
+ %11 = scf.if %10 -> (f32) {
+ %extracted = tensor.extract %arg1[%c0, %6, %7, %c0] : tensor<1x1x2x1xf32>
+ scf.yield %extracted : f32
+ } else {
+ scf.yield %cst : f32
+ }
+ linalg.yield %11 : f32
+ } -> tensor<1x2x2x1xf32>
+ %2 = tensor.empty() : tensor<4x1x1x1xf32>
+ %3 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%1 : tensor<1x2x2x1xf32>) outs(%2 : tensor<4x1x1x1xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ linalg.yield %in : f32
+ } -> tensor<4x1x1x1xf32>
+ %4 = tensor.empty() : tensor<1x1x2x4xf32>
+ %expanded = tensor.expand_shape %4 [[0], [1], [2], [3, 4, 5]] output_shape [1, 1, 2, 4, 1, 1] : tensor<1x1x2x4xf32> into tensor<1x1x2x4x1x1xf32>
+ %5 = linalg.generic {indexing_maps = [#map2, #map3, #map4], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "reduction"]} ins(%arg0, %3 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>) outs(%expanded : tensor<1x1x2x4x1x1xf32>) {
+ ^bb0(%in: f32, %in_0: f32, %out: f32):
+ %6 = arith.mulf %in, %in_0 : f32
+ %7 = arith.addf %6, %out : f32
+ linalg.yield %7 : f32
+ } -> tensor<1x1x2x4x1x1xf32>
+ %collapsed = tensor.collapse_shape %5 [[0], [1], [2], [3, 4, 5]] : tensor<1x1x2x4x1x1xf32> into tensor<1x1x2x4xf32>
+ return %collapsed : tensor<1x1x2x4xf32>
+ }
+}
+// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0 * 4 + d1 * 2 + d2 + d3, 0, 0, 0)>
+// CHECK: func.func @fuse_only_as_long_as_result_map_is_permutation
+// CHECK-SAME: (%[[ARG0:.*]]: tensor<1x1x2x1xf32>, %[[ARG1:.*]]: tensor<1x1x2x1xf32>) -> tensor<1x1x2x4xf32> {
+// CHECK-DAG: %[[OUT0:.+]] = tensor.empty() : tensor<1x2x2x1xf32>
+// CHECK-DAG: %[[OUT1:.+]] = tensor.empty() : tensor<4x1x1x1xf32>
+// CHECK: %[[FUSED:.+]]:2 = linalg.generic {indexing_maps = [#[[MAP0]], #[[MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
+// CHECK-SAME: outs(%[[OUT0]], %[[OUT1]] : tensor<1x2x2x1xf32>, tensor<4x1x1x1xf32>)
+// CHECK-NOT: linalg.generic
+// CHECK: tensor.expand_shape
+// CHECK: linalg.generic {{.*}}, iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "reduction"]}
+// CHECK-SAME: ins(%[[ARG0]], %[[FUSED]]#1 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>)
\ No newline at end of file
|
|
@DanielLevi6 this patch makes a small modification to (hopefully) better support fusion of ops when some results are preserved in the fused op. I see that you had worked on this problem in #104409 so I'm tagging you in case you wanted to have a look |
MaheshRavishankar
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nice catch! Thanks!
|
Thanks for the review! |
Thanks for letting me know. Good catch! |
…m#149843) In the linalg ElementwiseOpFusion transform, a pre-requisite for the fusion between a producer and consumer op is that the producer's output indexing map associated to the result to be fused must be invertible (e.g. a simple permutation). Before this patch, only the first output indexing map was being checked; this bug produced issues when the operand to fuse was not the 1st result of the producer op. For example, this situation arises when the producer op has multiple results because it's the result of previous fusions where the original result had been preserved: in these cases, the pass ought to check the indexing map of the result being fused, which is not necessarily the 1st one. Signed-off-by: Fabrizio Indirli <[email protected]>
In the linalg ElementwiseOpFusion transform, a pre-requisite for the fusion between a producer and consumer op is that the producer's output indexing map associated to the result to be fused must be invertible (e.g. a simple permutation).
Before this patch, only the first output indexing map was being checked; this bug produced issues when the operand to fuse was not the 1st result of the producer op. For example, this situation arises when the producer op has multiple results because it's the result of previous fusions where the original result had been preserved: in these cases, the pass ought to check the indexing map of the result being fused, which is not necessarily the 1st one.