Skip to content

[CIR] Mul CompoundAssignment support for ComplexType #152354

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion clang/lib/CIR/CodeGen/CIRGenExprComplex.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -171,6 +171,10 @@ class ComplexExprEmitter : public StmtVisitor<ComplexExprEmitter, mlir::Value> {
mlir::Value VisitBinSubAssign(const CompoundAssignOperator *e) {
return emitCompoundAssign(e, &ComplexExprEmitter::emitBinSub);
}

mlir::Value VisitBinMulAssign(const CompoundAssignOperator *e) {
return emitCompoundAssign(e, &ComplexExprEmitter::emitBinMul);
}
};
} // namespace

Expand Down Expand Up @@ -813,7 +817,7 @@ using CompoundFunc =
static CompoundFunc getComplexOp(BinaryOperatorKind op) {
switch (op) {
case BO_MulAssign:
llvm_unreachable("getComplexOp: BO_MulAssign");
return &ComplexExprEmitter::emitBinMul;
case BO_DivAssign:
llvm_unreachable("getComplexOp: BO_DivAssign");
case BO_SubAssign:
Expand Down
208 changes: 208 additions & 0 deletions clang/test/CIR/CodeGen/complex-compound-assignment.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -286,3 +286,211 @@ void foo4() {
// CXX_OGCG: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[C_ADDR]], i32 0, i32 1
// CXX_OGCG: store i32 %[[B_REAL]], ptr %[[C_REAL_PTR]], align 4
// CXX_OGCG: store i32 %[[B_IMAG]], ptr %[[C_IMAG_PTR]], align 4

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe add test cases for complex += real?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

void foo5() {
float _Complex a;
float b;
a += b;
}

// CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["a"]
// CIR: %[[B_ADDR:.*]] = cir.alloca !cir.float, !cir.ptr<!cir.float>, ["b"]
// CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr<!cir.float>, !cir.float
// CIR: %[[CONST_ZERO:.*]] = cir.const #cir.fp<0.000000e+00> : !cir.float
// CIR: %[[COMPLEX_B:.*]] = cir.complex.create %[[TMP_B]], %[[CONST_ZERO]] : !cir.float -> !cir.complex<!cir.float>
// CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
// CIR: %[[RESULT:.*]] = cir.complex.add %[[TMP_A]], %[[COMPLEX_B]] : !cir.complex<!cir.float>
// CIR: cir.store{{.*}} %[[RESULT]], %[[A_ADDR]] : !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>

// LLVM: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4
// LLVM: %[[B_ADDR:.*]] = alloca float, i64 1, align 4
// LLVM: %[[TMP_B:.*]] = load float, ptr %[[B_ADDR]], align 4
// LLVM: %[[TMP_COMPLEX_B:.*]] = insertvalue { float, float } {{.*}}, float %[[TMP_B]], 0
// LLVM: %[[COMPLEX_B:.*]] = insertvalue { float, float } %[[TMP_COMPLEX_B]], float 0.000000e+00, 1
// LLVM: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4
// LLVM: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0
// LLVM: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1
// LLVM: %[[B_REAL:.*]] = extractvalue { float, float } %[[COMPLEX_B]], 0
// LLVM: %[[B_IMAG:.*]] = extractvalue { float, float } %[[COMPLEX_B]], 1
// LLVM: %[[ADD_REAL:.*]] = fadd float %[[A_REAL]], %[[B_REAL]]
// LLVM: %[[ADD_IMAG:.*]] = fadd float %[[A_IMAG]], %[[B_IMAG]]
// LLVM: %[[TMP_RESULT:.*]] = insertvalue { float, float } poison, float %[[ADD_REAL]], 0
// LLVM: %[[RESULT:.*]] = insertvalue { float, float } %[[TMP_RESULT]], float %[[ADD_IMAG]], 1
// LLVM: store { float, float } %[[RESULT]], ptr %[[A_ADDR]], align 4

// OGCG: %[[A_ADDR:.*]] = alloca { float, float }, align 4
// OGCG: %[[B_ADDR:.*]] = alloca float, align 4
// OGCG: %[[TMP_B:.*]] = load float, ptr %[[B_ADDR]], align 4
// OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0
// OGCG: %[[A_REAL:.*]] = load float, ptr %[[A_REAL_PTR]], align 4
// OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1
// OGCG: %[[A_IMAG:.*]] = load float, ptr %[[A_IMAG_PTR]], align 4
// OGCG: %[[ADD_REAL:.*]] = fadd float %[[A_REAL]], %[[TMP_B]]
// OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0
// OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1
// OGCG: store float %[[ADD_REAL]], ptr %[[A_REAL_PTR]], align 4
// OGCG: store float %[[A_IMAG]], ptr %[[A_IMAG_PTR]], align 4

void foo6() {
int _Complex a;
int _Complex b;
b *= a;
}

// CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex<!s32i>, !cir.ptr<!cir.complex<!s32i>>, ["a"]
// CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex<!s32i>, !cir.ptr<!cir.complex<!s32i>>, ["b"]
// CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.complex<!s32i>>, !cir.complex<!s32i>
// CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr<!cir.complex<!s32i>>, !cir.complex<!s32i>
// CIR: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex<!s32i> -> !s32i
// CIR: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex<!s32i> -> !s32i
// CIR: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex<!s32i> -> !s32i
// CIR: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex<!s32i> -> !s32i
// CIR: %[[MUL_BR_AR:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_REAL]]) : !s32i
// CIR: %[[MUL_BI_AI:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_IMAG]]) : !s32i
// CIR: %[[MUL_BR_AI:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_IMAG]]) : !s32i
// CIR: %[[MUL_BI_AR:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_REAL]]) : !s32i
// CIR: %[[RESULT_REAL:.*]] = cir.binop(sub, %[[MUL_BR_AR]], %[[MUL_BI_AI]]) : !s32i
// CIR: %[[RESULT_IMAG:.*]] = cir.binop(add, %[[MUL_BR_AI]], %[[MUL_BI_AR]]) : !s32i
// CIR: %[[RESULT:.*]] = cir.complex.create %[[RESULT_REAL]], %[[RESULT_IMAG]] : !s32i -> !cir.complex<!s32i>
// CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex<!s32i>, !cir.ptr<!cir.complex<!s32i>>

// LLVM: %[[A_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4
// LLVM: %[[B_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4
// LLVM: %[[TMP_A:.*]] = load { i32, i32 }, ptr %[[A_ADDR]], align 4
// LLVM: %[[TMP_B:.*]] = load { i32, i32 }, ptr %[[B_ADDR]], align 4
// LLVM: %[[B_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 0
// LLVM: %[[B_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 1
// LLVM: %[[A_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 0
// LLVM: %[[A_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 1
// LLVM: %[[MUL_BR_AR:.*]] = mul i32 %[[B_REAL]], %[[A_REAL]]
// LLVM: %[[MUL_BI_AI:.*]] = mul i32 %[[B_IMAG]], %[[A_IMAG]]
// LLVM: %[[MUL_BR_AI:.*]] = mul i32 %[[B_REAL]], %[[A_IMAG]]
// LLVM: %[[MUL_BI_AR:.*]] = mul i32 %[[B_IMAG]], %[[A_REAL]]
// LLVM: %[[RESULT_REAL:.*]] = sub i32 %[[MUL_BR_AR]], %[[MUL_BI_AI]]
// LLVM: %[[RESULT_IMAG:.*]] = add i32 %[[MUL_BR_AI]], %[[MUL_BI_AR]]
// LLVM: %[[MUL_A_B:.*]] = insertvalue { i32, i32 } {{.*}}, i32 %[[RESULT_REAL]], 0
// LLVM: %[[RESULT:.*]] = insertvalue { i32, i32 } %[[MUL_A_B]], i32 %[[RESULT_IMAG]], 1
// LLVM: store { i32, i32 } %[[RESULT]], ptr %[[B_ADDR]], align 4

// OGCG: %[[A_ADDR:.*]] = alloca { i32, i32 }, align 4
// OGCG: %[[B_ADDR:.*]] = alloca { i32, i32 }, align 4
// OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 0
// OGCG: %[[A_REAL:.*]] = load i32, ptr %[[A_REAL_PTR]], align 4
// OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 1
// OGCG: %[[A_IMAG:.*]] = load i32, ptr %[[A_IMAG_PTR]], align 4
// OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0
// OGCG: %[[B_REAL:.*]] = load i32, ptr %[[B_REAL_PTR]], align 4
// OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1
// OGCG: %[[B_IMAG:.*]] = load i32, ptr %[[B_IMAG_PTR]], align 4
// OGCG: %[[MUL_BR_AR:.*]] = mul i32 %[[B_REAL]], %[[A_REAL]]
// OGCG: %[[MUL_BI_AI:.*]] = mul i32 %[[B_IMAG]], %[[A_IMAG]]
// OGCG: %[[RESULT_REAL:.*]] = sub i32 %[[MUL_BR_AR]], %[[MUL_BI_AI]]
// OGCG: %[[MUL_BI_AR:.*]] = mul i32 %[[B_IMAG]], %[[A_REAL]]
// OGCG: %[[MUL_BR_AI:.*]] = mul i32 %[[B_REAL]], %[[A_IMAG]]
// OGCG: %[[RESULT_IMAG:.*]] = add i32 %[[MUL_BI_AR]], %[[MUL_BR_AI]]
// OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0
// OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1
// OGCG: store i32 %[[RESULT_REAL]], ptr %[[B_REAL_PTR]], align 4
// OGCG: store i32 %[[RESULT_IMAG]], ptr %[[B_IMAG_PTR]], align 4

void foo7() {
float _Complex a;
float _Complex b;
b *= a;
}

// CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["a"]
// CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["b"]
// CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
// CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
// CIR: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
// CIR: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
// CIR: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
// CIR: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
// CIR: %[[MUL_BR_AR:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_REAL]]) : !cir.float
// CIR: %[[MUL_BI_AI:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_IMAG]]) : !cir.float
// CIR: %[[MUL_BR_AI:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_IMAG]]) : !cir.float
// CIR: %[[MUL_BI_AR:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_REAL]]) : !cir.float
// CIR: %[[C_REAL:.*]] = cir.binop(sub, %[[MUL_BR_AR]], %[[MUL_BI_AI]]) : !cir.float
// CIR: %[[C_IMAG:.*]] = cir.binop(add, %[[MUL_BR_AI]], %[[MUL_BI_AR]]) : !cir.float
// CIR: %[[COMPLEX:.*]] = cir.complex.create %[[C_REAL]], %[[C_IMAG]] : !cir.float -> !cir.complex<!cir.float>
// CIR: %[[IS_C_REAL_NAN:.*]] = cir.cmp(ne, %[[C_REAL]], %[[C_REAL]]) : !cir.float, !cir.bool
// CIR: %[[IS_C_IMAG_NAN:.*]] = cir.cmp(ne, %[[C_IMAG]], %[[C_IMAG]]) : !cir.float, !cir.bool
// CIR: %[[CONST_FALSE:.*]] = cir.const #false
// CIR: %[[SELECT_CONDITION:.*]] = cir.select if %[[IS_C_REAL_NAN]] then %[[IS_C_IMAG_NAN]] else %[[CONST_FALSE]] : (!cir.bool, !cir.bool, !cir.bool) -> !cir.bool
// CIR: %[[RESULT:.*]] = cir.ternary(%[[SELECT_CONDITION]], true {
// CIR: %[[LIBC_COMPLEX:.*]] = cir.call @__mulsc3(%[[B_REAL]], %[[B_IMAG]], %[[A_REAL]], %[[A_IMAG]]) : (!cir.float, !cir.float, !cir.float, !cir.float) -> !cir.complex<!cir.float>
// CIR: cir.yield %[[LIBC_COMPLEX]] : !cir.complex<!cir.float>
// CIR: }, false {
// CIR: cir.yield %[[COMPLEX]] : !cir.complex<!cir.float>
// CIR: }) : (!cir.bool) -> !cir.complex<!cir.float>
// CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>

// LLVM: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4
// LLVM: %[[B_ADDR:.*]] = alloca { float, float }, i64 1, align 4
// LLVM: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4
// LLVM: %[[TMP_B:.*]] = load { float, float }, ptr %[[B_ADDR]], align 4
// LLVM: %[[B_REAL:.*]] = extractvalue { float, float } %[[TMP_B]], 0
// LLVM: %[[B_IMAG:.*]] = extractvalue { float, float } %[[TMP_B]], 1
// LLVM: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0
// LLVM: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1
// LLVM: %[[MUL_BR_AR:.*]] = fmul float %[[B_REAL]], %[[A_REAL]]
// LLVM: %[[MUL_BI_AI:.*]] = fmul float %[[B_IMAG]], %[[A_IMAG]]
// LLVM: %[[MUL_BR_AI:.*]] = fmul float %[[B_REAL]], %[[A_IMAG]]
// LLVM: %[[MUL_BI_AR:.*]] = fmul float %[[B_IMAG]], %[[A_REAL]]
// LLVM: %[[C_REAL:.*]] = fsub float %[[MUL_BR_AR]], %[[MUL_BI_AI]]
// LLVM: %[[C_IMAG:.*]] = fadd float %[[MUL_BR_AI]], %[[MUL_BI_AR]]
// LLVM: %[[MUL_A_B:.*]] = insertvalue { float, float } {{.*}}, float %[[C_REAL]], 0
// LLVM: %[[COMPLEX:.*]] = insertvalue { float, float } %[[MUL_A_B]], float %[[C_IMAG]], 1
// LLVM: %[[IS_C_REAL_NAN:.*]] = fcmp une float %[[C_REAL]], %[[C_REAL]]
// LLVM: %[[IS_C_IMAG_NAN:.*]] = fcmp une float %[[C_IMAG]], %[[C_IMAG]]
// LLVM: %[[SELECT_CONDITION:.*]] = and i1 %[[IS_C_REAL_NAN]], %[[IS_C_IMAG_NAN]]
// LLVM: br i1 %[[SELECT_CONDITION]], label %[[THEN_LABEL:.*]], label %[[ELSE_LABEL:.*]]
// LLVM: [[THEN_LABEL]]:
// LLVM: %[[LIBC_COMPLEX:.*]] = call { float, float } @__mulsc3(float %[[B_REAL]], float %[[B_IMAG]], float %[[A_REAL]], float %[[A_IMAG]])
// LLVM: br label %[[PHI_BRANCH:.*]]
// LLVM: [[ELSE_LABEL]]:
// LLVM: br label %[[PHI_BRANCH:]]
// LLVM: [[PHI_BRANCH:]]:
// LLVM: %[[RESULT:.*]] = phi { float, float } [ %[[COMPLEX]], %[[ELSE_LABEL]] ], [ %[[LIBC_COMPLEX]], %[[THEN_LABEL]] ]
// LLVM: br label %[[END_LABEL:.*]]
// LLVM: [[END_LABEL]]:
// LLVM: store { float, float } %[[RESULT]], ptr %[[B_ADDR]], align 4

// OGCG: %[[A_ADDR:.*]] = alloca { float, float }, align 4
// OGCG: %[[B_ADDR:.*]] = alloca { float, float }, align 4
// OGCG: %[[COMPLEX_CALL_ADDR:.*]] = alloca { float, float }, align 4
// OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0
// OGCG: %[[A_REAL:.*]] = load float, ptr %[[A_REAL_PTR]], align 4
// OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1
// OGCG: %[[A_IMAG:.*]] = load float, ptr %[[A_IMAG_PTR]], align 4
// OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0
// OGCG: %[[B_REAL:.*]] = load float, ptr %[[B_REAL_PTR]], align 4
// OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1
// OGCG: %[[B_IMAG:.*]] = load float, ptr %[[B_IMAG_PTR]], align 4
// OGCG: %[[MUL_BR_AR:.*]] = fmul float %[[B_REAL]], %[[A_REAL]]
// OGCG: %[[MUL_BI_AI:.*]] = fmul float %[[B_IMAG]], %[[A_IMAG]]
// OGCG: %[[MUL_BR_AI:.*]] = fmul float %[[B_REAL]], %[[A_IMAG]]
// OGCG: %[[MUL_BI_AR:.*]] = fmul float %[[B_IMAG]], %[[A_REAL]]
// OGCG: %[[C_REAL:.*]] = fsub float %[[MUL_BR_AR]], %[[MUL_BI_AI]]
// OGCG: %[[C_IMAG:.*]] = fadd float %[[MUL_BR_AI]], %[[MUL_BI_AR]]
// OGCG: %[[IS_C_REAL_NAN:.*]] = fcmp uno float %[[C_REAL]], %[[C_REAL]]
// OGCG: br i1 %[[IS_C_REAL_NAN]], label %[[COMPLEX_IS_IMAG_NAN:.*]], label %[[END_LABEL:.*]], !prof !2
// OGCG: [[COMPLEX_IS_IMAG_NAN]]:
// OGCG: %[[IS_C_IMAG_NAN:.*]] = fcmp uno float %[[C_IMAG]], %[[C_IMAG]]
// OGCG: br i1 %[[IS_C_IMAG_NAN]], label %[[COMPLEX_LIB_CALL:.*]], label %[[END_LABEL]], !prof !2
// OGCG: [[COMPLEX_LIB_CALL]]:
// OGCG: %[[CALL_RESULT:.*]] = call{{.*}} <2 x float> @__mulsc3(float noundef %[[B_REAL]], float noundef %[[B_IMAG]], float noundef %[[A_REAL]], float noundef %[[A_IMAG]])
// OGCG: store <2 x float> %[[CALL_RESULT]], ptr %[[COMPLEX_CALL_ADDR]], align 4
// OGCG: %[[COMPLEX_CALL_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[COMPLEX_CALL_ADDR]], i32 0, i32 0
// OGCG: %[[COMPLEX_CALL_REAL:.*]] = load float, ptr %[[COMPLEX_CALL_REAL_PTR]], align 4
// OGCG: %[[COMPLEX_CALL_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[COMPLEX_CALL_ADDR]], i32 0, i32 1
// OGCG: %[[COMPLEX_CALL_IMAG:.*]] = load float, ptr %[[COMPLEX_CALL_IMAG_PTR]], align 4
// OGCG: br label %[[END_LABEL]]
// OGCG: [[END_LABEL]]:
// OGCG: %[[FINAL_REAL:.*]] = phi float [ %[[C_REAL]], %[[ENTRY:.*]] ], [ %[[C_REAL]], %[[COMPLEX_IS_IMAG_NAN]] ], [ %[[COMPLEX_CALL_REAL]], %[[COMPLEX_LIB_CALL]] ]
// OGCG: %[[FINAL_IMAG:.*]] = phi float [ %[[C_IMAG]], %[[ENTRY]] ], [ %[[C_IMAG]], %[[COMPLEX_IS_IMAG_NAN]] ], [ %[[COMPLEX_CALL_IMAG]], %[[COMPLEX_LIB_CALL]] ]
// OGCG: %[[C_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0
// OGCG: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1
// OGCG: store float %[[FINAL_REAL]], ptr %[[C_REAL_PTR]], align 4
// OGCG: store float %[[FINAL_IMAG]], ptr %[[C_IMAG_PTR]], align 4