-
Notifications
You must be signed in to change notification settings - Fork 14.7k
[DA] Extract duplicated logic from exactSIVtest and exactRDIVtest (NFC) #152712
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
@llvm/pr-subscribers-llvm-analysis Author: Ryotaro Kasuga (kasuga-fj) ChangesThis patch refactors Full diff: https://github.com/llvm/llvm-project/pull/152712.diff 1 Files Affected:
diff --git a/llvm/lib/Analysis/DependenceAnalysis.cpp b/llvm/lib/Analysis/DependenceAnalysis.cpp
index 835e270428694..c85ba653dec4b 100644
--- a/llvm/lib/Analysis/DependenceAnalysis.cpp
+++ b/llvm/lib/Analysis/DependenceAnalysis.cpp
@@ -1531,6 +1531,47 @@ static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
return Q;
}
+/// Given an affine expression of the form A*k + B, where k is an arbitrary
+/// integer, infer the possible range of k based on the known range of the
+/// affine expression. If we know A*k + B is non-negative, i.e.,
+///
+/// A*k + B >= 0
+///
+/// we can derive the following inequalities for k when A is positive:
+///
+/// k >= -B / A
+///
+/// Since k is an integer, it means k is greater than or equal to the
+/// ceil(-B / A). Similar logic applies when A is negative, or the upper bound
+/// of the affine expression is passed via \p UB.
+///
+/// Preconditions: \p A is non-zero, and we know A*k + B is non-negative.
+static std::pair<std::optional<APInt>, std::optional<APInt>>
+inferDomainOfAffine(const APInt &A, const APInt &B,
+ const std::optional<APInt> &UB) {
+ std::optional<APInt> TL, TU;
+ if (A.sgt(0)) {
+ TL = ceilingOfQuotient(-B, A);
+ LLVM_DEBUG(dbgs() << "\t Possible TL = " << *TL << "\n");
+ // New bound check - modification to Banerjee's e3 check
+ if (UB) {
+ // TODO?: Overflow check for UB - B
+ TU = floorOfQuotient(*UB - B, A);
+ LLVM_DEBUG(dbgs() << "\t Possible TU = " << *TU << "\n");
+ }
+ } else {
+ TU = floorOfQuotient(-B, A);
+ LLVM_DEBUG(dbgs() << "\t Possible TU = " << *TU << "\n");
+ // New bound check - modification to Banerjee's e3 check
+ if (UB) {
+ // TODO?: Overflow check for UB - B
+ TL = ceilingOfQuotient(*UB - B, A);
+ LLVM_DEBUG(dbgs() << "\t Possible TL = " << *TL << "\n");
+ }
+ }
+ return std::make_pair(TL, TU);
+}
+
// exactSIVtest -
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
// where i is an induction variable, c1 and c2 are loop invariant, and a1
@@ -1590,14 +1631,12 @@ bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
// since SCEV construction normalizes, LM = 0
- APInt UM(Bits, 1, true);
- bool UMValid = false;
+ std::optional<APInt> UM;
// UM is perhaps unavailable, let's check
if (const SCEVConstant *CUB =
collectConstantUpperBound(CurLoop, Delta->getType())) {
UM = CUB->getAPInt();
- LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n");
- UMValid = true;
+ LLVM_DEBUG(dbgs() << "\t UM = " << *UM << "\n");
}
APInt TU(APInt::getSignedMaxValue(Bits));
@@ -1609,44 +1648,33 @@ bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
- SmallVector<APInt, 2> TLVec, TUVec;
APInt TB = BM.sdiv(G);
- if (TB.sgt(0)) {
- TLVec.push_back(ceilingOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- // New bound check - modification to Banerjee's e3 check
- if (UMValid) {
- TUVec.push_back(floorOfQuotient(UM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- } else {
- TUVec.push_back(floorOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- // New bound check - modification to Banerjee's e3 check
- if (UMValid) {
- TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- }
-
APInt TA = AM.sdiv(G);
- if (TA.sgt(0)) {
- if (UMValid) {
- TUVec.push_back(floorOfQuotient(UM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- // New bound check - modification to Banerjee's e3 check
- TLVec.push_back(ceilingOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- } else {
- if (UMValid) {
- TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- // New bound check - modification to Banerjee's e3 check
- TUVec.push_back(floorOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
+
+ // At this point, we have the following equations:
+ //
+ // TA*i0 - TB*i1 = TC
+ //
+ // Also, we know that the all pairs of (i0, i1) can be expressed as:
+ //
+ // (TX + k*TB, TY + k*TA)
+ //
+ // where k is an arbitrary integer.
+ auto [TL0, TU0] = inferDomainOfAffine(TB, TX, UM);
+ auto [TL1, TU1] = inferDomainOfAffine(TA, TY, UM);
+
+ auto CreateVec = [](const std::optional<APInt> &V0,
+ const std::optional<APInt> &V1) {
+ SmallVector<APInt, 2> Vec;
+ if (V0)
+ Vec.push_back(*V0);
+ if (V1)
+ Vec.push_back(*V1);
+ return Vec;
+ };
+
+ SmallVector<APInt, 2> TLVec = CreateVec(TL0, TL1);
+ SmallVector<APInt, 2> TUVec = CreateVec(TU0, TU1);
LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
@@ -1967,24 +1995,20 @@ bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
// since SCEV construction seems to normalize, LM = 0
- APInt SrcUM(Bits, 1, true);
- bool SrcUMvalid = false;
+ std::optional<APInt> SrcUM;
// SrcUM is perhaps unavailable, let's check
if (const SCEVConstant *UpperBound =
collectConstantUpperBound(SrcLoop, Delta->getType())) {
SrcUM = UpperBound->getAPInt();
- LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
- SrcUMvalid = true;
+ LLVM_DEBUG(dbgs() << "\t SrcUM = " << *SrcUM << "\n");
}
- APInt DstUM(Bits, 1, true);
- bool DstUMvalid = false;
+ std::optional<APInt> DstUM;
// UM is perhaps unavailable, let's check
if (const SCEVConstant *UpperBound =
collectConstantUpperBound(DstLoop, Delta->getType())) {
DstUM = UpperBound->getAPInt();
- LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
- DstUMvalid = true;
+ LLVM_DEBUG(dbgs() << "\t DstUM = " << *DstUM << "\n");
}
APInt TU(APInt::getSignedMaxValue(Bits));
@@ -1996,47 +2020,39 @@ bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
- SmallVector<APInt, 2> TLVec, TUVec;
APInt TB = BM.sdiv(G);
- if (TB.sgt(0)) {
- TLVec.push_back(ceilingOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- if (SrcUMvalid) {
- TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- } else {
- TUVec.push_back(floorOfQuotient(-TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- if (SrcUMvalid) {
- TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- }
-
APInt TA = AM.sdiv(G);
- if (TA.sgt(0)) {
- TLVec.push_back(ceilingOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- if (DstUMvalid) {
- TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- }
- } else {
- TUVec.push_back(floorOfQuotient(-TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
- if (DstUMvalid) {
- TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
- LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
- }
- }
- if (TLVec.empty() || TUVec.empty())
- return false;
+ // At this point, we have the following equations:
+ //
+ // TA*i - TB*j = TC
+ //
+ // Also, we know that the all pairs of (i, j) can be expressed as:
+ //
+ // (TX + k*TB, TY + k*TA)
+ //
+ // where k is an arbitrary integer.
+ auto [TL0, TU0] = inferDomainOfAffine(TB, TX, SrcUM);
+ auto [TL1, TU1] = inferDomainOfAffine(TA, TY, DstUM);
LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
+ auto CreateVec = [](const std::optional<APInt> &V0,
+ const std::optional<APInt> &V1) {
+ SmallVector<APInt, 2> Vec;
+ if (V0)
+ Vec.push_back(*V0);
+ if (V1)
+ Vec.push_back(*V1);
+ return Vec;
+ };
+
+ SmallVector<APInt, 2> TLVec = CreateVec(TL0, TL1);
+ SmallVector<APInt, 2> TUVec = CreateVec(TU0, TU1);
+ if (TLVec.empty() || TUVec.empty())
+ return false;
+
TL = APIntOps::smax(TLVec.front(), TLVec.back());
TU = APIntOps::smin(TUVec.front(), TUVec.back());
LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
|
// At this point, we have the following equations: | ||
// | ||
// TA*i0 - TB*i1 = TC | ||
// | ||
// Also, we know that the all pairs of (i0, i1) can be expressed as: | ||
// | ||
// (TX + k*TB, TY + k*TA) | ||
// | ||
// where k is an arbitrary integer. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Disclaimer: I do not have access to the original book Dependence Analysis for Supercomputing, so these comments are based solely on my interpretation of the code.
Please note that this comment is very likely to be incorrect.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
This patch refactors
exactSIVtest
andexactRDIVtest
by consolidating duplicated logic into a single function. Same as #152688, the main goal is to improve code maintainability, since extra validation logic (as written in TODO comments) may be necessary.