Skip to content

[DA] Extract duplicated logic from exactSIVtest and exactRDIVtest (NFC) #152712

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 13, 2025

Conversation

kasuga-fj
Copy link
Contributor

This patch refactors exactSIVtest and exactRDIVtest by consolidating duplicated logic into a single function. Same as #152688, the main goal is to improve code maintainability, since extra validation logic (as written in TODO comments) may be necessary.

@llvmbot llvmbot added the llvm:analysis Includes value tracking, cost tables and constant folding label Aug 8, 2025
@llvmbot
Copy link
Member

llvmbot commented Aug 8, 2025

@llvm/pr-subscribers-llvm-analysis

Author: Ryotaro Kasuga (kasuga-fj)

Changes

This patch refactors exactSIVtest and exactRDIVtest by consolidating duplicated logic into a single function. Same as #152688, the main goal is to improve code maintainability, since extra validation logic (as written in TODO comments) may be necessary.


Full diff: https://github.com/llvm/llvm-project/pull/152712.diff

1 Files Affected:

  • (modified) llvm/lib/Analysis/DependenceAnalysis.cpp (+98-82)
diff --git a/llvm/lib/Analysis/DependenceAnalysis.cpp b/llvm/lib/Analysis/DependenceAnalysis.cpp
index 835e270428694..c85ba653dec4b 100644
--- a/llvm/lib/Analysis/DependenceAnalysis.cpp
+++ b/llvm/lib/Analysis/DependenceAnalysis.cpp
@@ -1531,6 +1531,47 @@ static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
     return Q;
 }
 
+/// Given an affine expression of the form A*k + B, where k is an arbitrary
+/// integer, infer the possible range of k based on the known range of the
+/// affine expression. If we know A*k + B is non-negative, i.e.,
+///
+///   A*k + B >= 0
+///
+/// we can derive the following inequalities for k when A is positive:
+///
+///   k >= -B / A
+///
+/// Since k is an integer, it means k is greater than or equal to the
+/// ceil(-B / A). Similar logic applies when A is negative, or the upper bound
+/// of the affine expression is passed via \p UB.
+///
+/// Preconditions: \p A is non-zero, and we know A*k + B is non-negative.
+static std::pair<std::optional<APInt>, std::optional<APInt>>
+inferDomainOfAffine(const APInt &A, const APInt &B,
+                    const std::optional<APInt> &UB) {
+  std::optional<APInt> TL, TU;
+  if (A.sgt(0)) {
+    TL = ceilingOfQuotient(-B, A);
+    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << *TL << "\n");
+    // New bound check - modification to Banerjee's e3 check
+    if (UB) {
+      // TODO?: Overflow check for UB - B
+      TU = floorOfQuotient(*UB - B, A);
+      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << *TU << "\n");
+    }
+  } else {
+    TU = floorOfQuotient(-B, A);
+    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << *TU << "\n");
+    // New bound check - modification to Banerjee's e3 check
+    if (UB) {
+      // TODO?: Overflow check for UB - B
+      TL = ceilingOfQuotient(*UB - B, A);
+      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << *TL << "\n");
+    }
+  }
+  return std::make_pair(TL, TU);
+}
+
 // exactSIVtest -
 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
 // where i is an induction variable, c1 and c2 are loop invariant, and a1
@@ -1590,14 +1631,12 @@ bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
 
   // since SCEV construction normalizes, LM = 0
-  APInt UM(Bits, 1, true);
-  bool UMValid = false;
+  std::optional<APInt> UM;
   // UM is perhaps unavailable, let's check
   if (const SCEVConstant *CUB =
           collectConstantUpperBound(CurLoop, Delta->getType())) {
     UM = CUB->getAPInt();
-    LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
-    UMValid = true;
+    LLVM_DEBUG(dbgs() << "\t    UM = " << *UM << "\n");
   }
 
   APInt TU(APInt::getSignedMaxValue(Bits));
@@ -1609,44 +1648,33 @@ bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
   LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
   LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
 
-  SmallVector<APInt, 2> TLVec, TUVec;
   APInt TB = BM.sdiv(G);
-  if (TB.sgt(0)) {
-    TLVec.push_back(ceilingOfQuotient(-TX, TB));
-    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
-    // New bound check - modification to Banerjee's e3 check
-    if (UMValid) {
-      TUVec.push_back(floorOfQuotient(UM - TX, TB));
-      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
-    }
-  } else {
-    TUVec.push_back(floorOfQuotient(-TX, TB));
-    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
-    // New bound check - modification to Banerjee's e3 check
-    if (UMValid) {
-      TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
-      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
-    }
-  }
-
   APInt TA = AM.sdiv(G);
-  if (TA.sgt(0)) {
-    if (UMValid) {
-      TUVec.push_back(floorOfQuotient(UM - TY, TA));
-      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
-    }
-    // New bound check - modification to Banerjee's e3 check
-    TLVec.push_back(ceilingOfQuotient(-TY, TA));
-    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
-  } else {
-    if (UMValid) {
-      TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
-      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
-    }
-    // New bound check - modification to Banerjee's e3 check
-    TUVec.push_back(floorOfQuotient(-TY, TA));
-    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
-  }
+
+  // At this point, we have the following equations:
+  //
+  //   TA*i0 - TB*i1 = TC
+  //
+  // Also, we know that the all pairs of (i0, i1) can be expressed as:
+  //
+  //   (TX + k*TB, TY + k*TA)
+  //
+  // where k is an arbitrary integer.
+  auto [TL0, TU0] = inferDomainOfAffine(TB, TX, UM);
+  auto [TL1, TU1] = inferDomainOfAffine(TA, TY, UM);
+
+  auto CreateVec = [](const std::optional<APInt> &V0,
+                      const std::optional<APInt> &V1) {
+    SmallVector<APInt, 2> Vec;
+    if (V0)
+      Vec.push_back(*V0);
+    if (V1)
+      Vec.push_back(*V1);
+    return Vec;
+  };
+
+  SmallVector<APInt, 2> TLVec = CreateVec(TL0, TL1);
+  SmallVector<APInt, 2> TUVec = CreateVec(TU0, TU1);
 
   LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
   LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
@@ -1967,24 +1995,20 @@ bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
 
   // since SCEV construction seems to normalize, LM = 0
-  APInt SrcUM(Bits, 1, true);
-  bool SrcUMvalid = false;
+  std::optional<APInt> SrcUM;
   // SrcUM is perhaps unavailable, let's check
   if (const SCEVConstant *UpperBound =
           collectConstantUpperBound(SrcLoop, Delta->getType())) {
     SrcUM = UpperBound->getAPInt();
-    LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
-    SrcUMvalid = true;
+    LLVM_DEBUG(dbgs() << "\t    SrcUM = " << *SrcUM << "\n");
   }
 
-  APInt DstUM(Bits, 1, true);
-  bool DstUMvalid = false;
+  std::optional<APInt> DstUM;
   // UM is perhaps unavailable, let's check
   if (const SCEVConstant *UpperBound =
           collectConstantUpperBound(DstLoop, Delta->getType())) {
     DstUM = UpperBound->getAPInt();
-    LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
-    DstUMvalid = true;
+    LLVM_DEBUG(dbgs() << "\t    DstUM = " << *DstUM << "\n");
   }
 
   APInt TU(APInt::getSignedMaxValue(Bits));
@@ -1996,47 +2020,39 @@ bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
   LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
   LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
 
-  SmallVector<APInt, 2> TLVec, TUVec;
   APInt TB = BM.sdiv(G);
-  if (TB.sgt(0)) {
-    TLVec.push_back(ceilingOfQuotient(-TX, TB));
-    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
-    if (SrcUMvalid) {
-      TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
-      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
-    }
-  } else {
-    TUVec.push_back(floorOfQuotient(-TX, TB));
-    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
-    if (SrcUMvalid) {
-      TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
-      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
-    }
-  }
-
   APInt TA = AM.sdiv(G);
-  if (TA.sgt(0)) {
-    TLVec.push_back(ceilingOfQuotient(-TY, TA));
-    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
-    if (DstUMvalid) {
-      TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
-      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
-    }
-  } else {
-    TUVec.push_back(floorOfQuotient(-TY, TA));
-    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
-    if (DstUMvalid) {
-      TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
-      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
-    }
-  }
 
-  if (TLVec.empty() || TUVec.empty())
-    return false;
+  // At this point, we have the following equations:
+  //
+  //   TA*i - TB*j = TC
+  //
+  // Also, we know that the all pairs of (i, j) can be expressed as:
+  //
+  //   (TX + k*TB, TY + k*TA)
+  //
+  // where k is an arbitrary integer.
+  auto [TL0, TU0] = inferDomainOfAffine(TB, TX, SrcUM);
+  auto [TL1, TU1] = inferDomainOfAffine(TA, TY, DstUM);
 
   LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
   LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
 
+  auto CreateVec = [](const std::optional<APInt> &V0,
+                      const std::optional<APInt> &V1) {
+    SmallVector<APInt, 2> Vec;
+    if (V0)
+      Vec.push_back(*V0);
+    if (V1)
+      Vec.push_back(*V1);
+    return Vec;
+  };
+
+  SmallVector<APInt, 2> TLVec = CreateVec(TL0, TL1);
+  SmallVector<APInt, 2> TUVec = CreateVec(TU0, TU1);
+  if (TLVec.empty() || TUVec.empty())
+    return false;
+
   TL = APIntOps::smax(TLVec.front(), TLVec.back());
   TU = APIntOps::smin(TUVec.front(), TUVec.back());
   LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");

Comment on lines +1654 to +1662
// At this point, we have the following equations:
//
// TA*i0 - TB*i1 = TC
//
// Also, we know that the all pairs of (i0, i1) can be expressed as:
//
// (TX + k*TB, TY + k*TA)
//
// where k is an arbitrary integer.
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Disclaimer: I do not have access to the original book Dependence Analysis for Supercomputing, so these comments are based solely on my interpretation of the code.

Please note that this comment is very likely to be incorrect.

@kasuga-fj kasuga-fj requested a review from Meinersbur August 8, 2025 13:38
Copy link
Member

@Meinersbur Meinersbur left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@kasuga-fj kasuga-fj merged commit bf6796f into llvm:main Aug 13, 2025
9 checks passed
@kasuga-fj kasuga-fj deleted the da-consolidate-1 branch August 13, 2025 08:45
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
llvm:analysis Includes value tracking, cost tables and constant folding
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants