Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
160 changes: 160 additions & 0 deletions flang/include/flang/Evaluate/rewrite.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
//===-- include/flang/Evaluate/rewrite.h ------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_EVALUATE_REWRITE_H_
#define FORTRAN_EVALUATE_REWRITE_H_

#include "flang/Common/visit.h"
#include "flang/Evaluate/expression.h"
#include "flang/Support/Fortran.h"
#include "llvm/ADT/STLExtras.h"

#include <tuple>
#include <type_traits>
#include <utility>
#include <variant>

namespace Fortran::evaluate {
namespace rewrite {
namespace detail {
template <typename, typename = void> //
struct IsOperation {
static constexpr bool value{false};
};

template <typename T>
struct IsOperation<T, std::void_t<decltype(T::operands)>> {
static constexpr bool value{true};
};
} // namespace detail

template <typename T>
constexpr bool is_operation_v{detail::IsOperation<T>::value};

/// Individual Expr<T> rewriter that simply constructs an expression that is
/// identical to the input. This is a suitable base class for all user-defined
/// rewriters.
struct Identity {
template <typename T, typename U>
Expr<T> operator()(Expr<T> &&x, const U &op) {
return std::move(x);
}
};

/// Bottom-up Expr<T> rewriter.
///
/// The Mutator traverses and reconstructs given Expr<T>. Going bottom-up,
/// whenever the traversal visits a sub-node of type Expr<U> (for some U),
/// it will invoke the user-provided rewriter via the () operator.
///
/// If x is of type Expr<U>, it will call (in pseudo-code):
/// rewriter_(x, active_member_of(x.u))
/// The second parameter is there to make it easier to overload the () operator
/// for specific operations in Expr<...>.
///
/// The user rewriter is only invoked for Expr<U>, not for Operation, nor any
/// other subobject.
template <typename Rewriter> struct Mutator {
Mutator(Rewriter &rewriter) : rewriter_(rewriter) {}

template <typename T, typename U = llvm::remove_cvref_t<T>>
U operator()(T &&x) {
if constexpr (std::is_lvalue_reference_v<T>) {
return Mutate(U(x));
} else {
return Mutate(std::move(x));
}
}

private:
template <typename T> struct LambdaWithRvalueCapture {
LambdaWithRvalueCapture(Rewriter &r, Expr<T> &&c)
: rewriter_(r), capture_(std::move(c)) {}
template <typename S> Expr<T> operator()(const S &s) {
return rewriter_(std::move(capture_), s);
}

private:
Rewriter &rewriter_;
Expr<T> &&capture_;
};

template <typename T, typename = std::enable_if_t<!is_operation_v<T>>>
T Mutate(T &&x) const {
return std::move(x);
}

template <typename D, typename = std::enable_if_t<is_operation_v<D>>>
D Mutate(D &&op, std::make_index_sequence<D::operands> t = {}) const {
return MutateOp(std::move(op), t);
}

template <typename T> //
Expr<T> Mutate(Expr<T> &&x) const {
// First construct the new expression with the rewritten op.
Expr<T> n{common::visit(
[&](auto &&s) { //
return Expr<T>(Mutate(std::move(s)));
},
std::move(x.u))};
// Return the rewritten expression. The second visit is to make sure
// that the second argument in the call to the rewriter is a part of
// the Expr<T> passed to it.
return common::visit(
LambdaWithRvalueCapture<T>(rewriter_, std::move(n)), std::move(n.u));
}

template <typename... Ts>
std::variant<Ts...> Mutate(std::variant<Ts...> &&u) const {
return common::visit(
[this](auto &&s) { return Mutate(std::move(s)); }, std::move(u));
}

template <typename... Ts>
std::tuple<Ts...> Mutate(std::tuple<Ts...> &&t) const {
return MutateTuple(std::move(t), std::index_sequence_for<Ts...>{});
}

template <typename... Ts, size_t... Is>
std::tuple<Ts...> MutateTuple(
std::tuple<Ts...> &&t, std::index_sequence<Is...>) const {
return std::make_tuple(Mutate(std::move(std::get<Is>(t))...));
}

template <typename D, size_t... Is>
D MutateOp(D &&op, std::index_sequence<Is...>) const {
return D(Mutate(std::move(op.template operand<Is>()))...);
}

template <typename T, size_t... Is>
Extremum<T> MutateOp(Extremum<T> &&op, std::index_sequence<Is...>) const {
return Extremum<T>(
op.ordering, Mutate(std::move(op.template operand<Is>()))...);
}

template <int K, size_t... Is>
ComplexComponent<K> MutateOp(
ComplexComponent<K> &&op, std::index_sequence<Is...>) const {
return ComplexComponent<K>(
op.isImaginaryPart, Mutate(std::move(op.template operand<Is>()))...);
}

template <int K, size_t... Is>
LogicalOperation<K> MutateOp(
LogicalOperation<K> &&op, std::index_sequence<Is...>) const {
return LogicalOperation<K>(
op.logicalOperator, Mutate(std::move(op.template operand<Is>()))...);
}

Rewriter &rewriter_;
};

template <typename Rewriter> Mutator(Rewriter &) -> Mutator<Rewriter>;
} // namespace rewrite
} // namespace Fortran::evaluate

#endif // FORTRAN_EVALUATE_REWRITE_H_