-
Notifications
You must be signed in to change notification settings - Fork 14.9k
[DA] Check monotonicity for subscripts #154527
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
a0d05ec
75639b9
5063efc
4dad091
8986cd4
dcb3b19
e93be2e
72b2902
b5ca793
65ccc61
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3308,6 +3308,300 @@ void DependenceInfo::updateDirection(Dependence::DVEntry &Level, | |
llvm_unreachable("constraint has unexpected kind"); | ||
} | ||
|
||
namespace { | ||
|
||
/// The type of signed monotonicity of a SCEV expression. This property is | ||
/// defined with respect to the outermost loop that DA is analyzing. Invariant | ||
/// and MultiMonotonic mutually exclusive, and both imply NoSignedWrap. | ||
/// | ||
/// This is designed to classify the behavior of AddRec expressions, and does | ||
/// not care about other SCEVs. For example, given the two loop invariants `A` | ||
/// and `B`, `A + B` is treated as Invariant even if the addition may wrap. On | ||
/// the other hand, if either `A` or `B` is an AddRec and we cannot prove the | ||
/// addition doesn't wrap, the result is classified as Unknown. | ||
enum class MonotonicityType { | ||
Unknown, ///< The expression contains some non loop-invariant SCEVUnknown or | ||
///< arithmetic operation that has some AddRec as its subexpression | ||
///< and may cause signed wrap. | ||
NoSignedWrap, ///< The expression doesn't contain any AddRecs that may wrap. | ||
///< This is a weaker property than Invariant or MultiMonotonic. | ||
///< Invariant and MultiMonotonic imply NoSignedWrap. | ||
Invariant, ///< The expression is a loop-invariant. | ||
MultiMonotonic, ///< The expression is monotonically increasing or decreasing | ||
///< with respect to each loop. This is exclusive of | ||
///< Invariant. That is, we say an SCEV is MultiMonotonic only | ||
///< if it contains at least one AddRec where its step | ||
///< reccurence value is non-zero. Monotonicity is checked | ||
///< independently for each loop. It is allowed to contain | ||
///< both increasing and decreasing AddRecs. | ||
}; | ||
|
||
/// A visitor that checks the signed monotonicity of SCEVs. | ||
struct SCEVSignedMonotonicityChecker | ||
: public SCEVVisitor<SCEVSignedMonotonicityChecker, MonotonicityType> { | ||
|
||
/// \p Ptr is the pointer that the SCEV is associated with, if any. It may be | ||
/// used for the inferrence. | ||
static MonotonicityType checkMonotonicity(ScalarEvolution *SE, | ||
const SCEV *Expr, | ||
const Loop *OutermostLoop, | ||
const Value *Ptr = nullptr); | ||
|
||
MonotonicityType visitAddRecExpr(const SCEVAddRecExpr *Expr); | ||
MonotonicityType visitUnknown(const SCEVUnknown *Expr); | ||
MonotonicityType visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr); | ||
MonotonicityType visitSignExtendExpr(const SCEVSignExtendExpr *Expr); | ||
|
||
MonotonicityType visitAddExpr(const SCEVAddExpr *Expr) { | ||
return visitNAryHelper(Expr); | ||
} | ||
MonotonicityType visitMulExpr(const SCEVMulExpr *Expr) { | ||
return visitNAryHelper(Expr); | ||
} | ||
|
||
MonotonicityType visitConstant(const SCEVConstant *) { | ||
return MonotonicityType::Invariant; | ||
} | ||
MonotonicityType visitVScale(const SCEVVScale *) { | ||
return MonotonicityType::Invariant; | ||
} | ||
|
||
// TODO: Handle more cases. | ||
MonotonicityType visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { | ||
return unknownMonotonicity(Expr); | ||
} | ||
MonotonicityType visitTruncateExpr(const SCEVTruncateExpr *Expr) { | ||
return unknownMonotonicity(Expr); | ||
} | ||
MonotonicityType visitUDivExpr(const SCEVUDivExpr *Expr) { | ||
return unknownMonotonicity(Expr); | ||
} | ||
MonotonicityType visitSMaxExpr(const SCEVSMaxExpr *Expr) { | ||
return unknownMonotonicity(Expr); | ||
} | ||
MonotonicityType visitUMaxExpr(const SCEVUMaxExpr *Expr) { | ||
return unknownMonotonicity(Expr); | ||
} | ||
MonotonicityType visitSMinExpr(const SCEVSMinExpr *Expr) { | ||
return unknownMonotonicity(Expr); | ||
} | ||
MonotonicityType visitUMinExpr(const SCEVUMinExpr *Expr) { | ||
return unknownMonotonicity(Expr); | ||
} | ||
MonotonicityType visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { | ||
return unknownMonotonicity(Expr); | ||
} | ||
MonotonicityType visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { | ||
return unknownMonotonicity(Expr); | ||
} | ||
|
||
private: | ||
ScalarEvolution *SE; | ||
const Loop *OutermostLoop; | ||
bool NoWrapFromGEP = false; | ||
|
||
SCEVSignedMonotonicityChecker(ScalarEvolution *SE, const Loop *OutermostLoop, | ||
const Value *Ptr); | ||
|
||
MonotonicityType visitNAryHelper(const SCEVNAryExpr *Expr); | ||
MonotonicityType unknownMonotonicity(const SCEV *Expr); | ||
bool isLoopInvariant(const SCEV *Expr) const; | ||
}; | ||
|
||
} // anonymous namespace | ||
|
||
SCEVSignedMonotonicityChecker::SCEVSignedMonotonicityChecker( | ||
ScalarEvolution *SE, const Loop *OutermostLoop, const Value *Ptr) | ||
: SE(SE), OutermostLoop(OutermostLoop) { | ||
if (Ptr) { | ||
// Perform reasoning similar to LoopAccessAnalysis. If an AddRec would wrap | ||
// and the GEP would have nusw, the wrapped memory location would become | ||
// like as follows (in the mathmatical sense, assuming the step recurrence | ||
// is positive): | ||
// | ||
// (previously accessed location) + (step recurrence) - 2^N | ||
// | ||
// where N is the size of the pointer index type. Since the value of step | ||
// recurrence is less than 2^(N-1), the distance between the previously | ||
// accessed location and the wrapped location will be greater than 2^(N-1), | ||
// which is larger than half the pointer index type space. The size of | ||
// allocated object must not exceed the largest signed integer that fits | ||
// into the index type, so the GEP value would be poison and any memory | ||
// access using it would be immediate UB when executed. | ||
// | ||
// TODO: We don't check if the result of the GEP is always used. Maybe we | ||
// should check the reachability from the GEP to the target instruction. | ||
// E.g., in the following case, no-wrap would not trigger immediate UB: | ||
// | ||
// entry: | ||
// ... | ||
// %gep = getelementptr inbounds i32, ptr %ptr, i32 %addrec | ||
// br i1 %cond, label %store, label %sink | ||
// | ||
// store: | ||
// store i32 42, ptr %ptr | ||
// br label %sink | ||
// | ||
// sink: | ||
// ... | ||
// | ||
auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); | ||
if (GEP && GEP->hasNoUnsignedSignedWrap()) | ||
NoWrapFromGEP = true; | ||
} | ||
} | ||
|
||
MonotonicityType SCEVSignedMonotonicityChecker::checkMonotonicity( | ||
ScalarEvolution *SE, const SCEV *Expr, const Loop *OutermostLoop, | ||
const Value *Ptr) { | ||
SCEVSignedMonotonicityChecker Checker(SE, OutermostLoop, Ptr); | ||
MonotonicityType MT = Checker.visit(Expr); | ||
|
||
#ifndef NDEBUG | ||
switch (MT) { | ||
case MonotonicityType::Unknown: | ||
LLVM_DEBUG(dbgs() << "Monotonicity: Unknown expr: " << *Expr << "\n"); | ||
break; | ||
case MonotonicityType::NoSignedWrap: | ||
LLVM_DEBUG(dbgs() << "Monotonicity: No signed wrap expr: " << *Expr | ||
<< "\n"); | ||
break; | ||
case MonotonicityType::Invariant: | ||
LLVM_DEBUG(dbgs() << "Monotonicity: Invariant expr: " << *Expr << "\n"); | ||
break; | ||
case MonotonicityType::MultiMonotonic: | ||
LLVM_DEBUG(dbgs() << "Monotonicity: Monotonic expr: " << *Expr << "\n"); | ||
break; | ||
} | ||
#endif | ||
return MT; | ||
} | ||
|
||
MonotonicityType | ||
SCEVSignedMonotonicityChecker::visitNAryHelper(const SCEVNAryExpr *Expr) { | ||
assert((isa<SCEVAddExpr>(Expr) || isa<SCEVMulExpr>(Expr)) && | ||
"Unexpected SCEV"); | ||
|
||
if (isLoopInvariant(Expr)) | ||
return MonotonicityType::Invariant; | ||
|
||
MonotonicityType Result = MonotonicityType::Invariant; | ||
for (const SCEV *Op : Expr->operands()) { | ||
assert(Result != MonotonicityType::Unknown && "Unexpected state"); | ||
switch (visit(Op)) { | ||
case MonotonicityType::Unknown: | ||
return unknownMonotonicity(Expr); | ||
case MonotonicityType::NoSignedWrap: | ||
Result = MonotonicityType::NoSignedWrap; | ||
break; | ||
case MonotonicityType::Invariant: | ||
break; | ||
case MonotonicityType::MultiMonotonic: { | ||
switch (Result) { | ||
case MonotonicityType::Unknown: | ||
llvm_unreachable("should have been handled above"); | ||
case MonotonicityType::NoSignedWrap: | ||
break; | ||
case MonotonicityType::Invariant: | ||
if (!Expr->hasNoSignedWrap()) | ||
return unknownMonotonicity(Expr); | ||
Result = MonotonicityType::MultiMonotonic; | ||
break; | ||
case MonotonicityType::MultiMonotonic: | ||
if (!Expr->hasNoSignedWrap()) | ||
return unknownMonotonicity(Expr); | ||
if (!isa<SCEVAddExpr>(Expr)) | ||
return unknownMonotonicity(Expr); | ||
// Monotonic + Monotonic might be a loop invariant, e.g., the following | ||
// SCEV: | ||
// | ||
// {0,+,1}<%loop> + {0,+,-1}<%loop> | ||
// | ||
// In that case, relax the property to NoSignedWrap. | ||
Result = MonotonicityType::NoSignedWrap; | ||
break; | ||
} | ||
} break; | ||
} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I dont understand one thing here. If the entire SCEV is NSW, why do we need to check if its NSW for individual operands? Do you have specific case in mind? Also, I am trying to understand what
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. First of all, probably the name is misleading.
I was imagining an example like
DA breaks exactly due to the gap between mathematical theory and LLVM IR semantics.
To clearly distinguish between
I think this is just a simple implementation mistake. Thanks for pointing it out. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
ok, please change to Unknown or CouldNotCompute.
If the entire expression is nuw/nsw then individual SCEVs must follow the same pattern but vice-versa cant be true(this may wrap).
this is not true because when its split form, each AddRed can have different values . But with (%m+%n) , every itr is multiple of (%m+%n)
this expr can have values 0(=0+0), -1(=0-1), 1(=1+0), 0(=1-1). This is definitely not a constant. So, this should be There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. What I'm not entirely sure about is whether, given the following IR, the SCEV corresponding to loop:
%i = phi i64 [ 0, %entry ], [ %i.inc, %loop ]
%m_i = mul nsw i64 %m, %i
%n_i = mul nsw i64 %n, %i
%mn_i = add nsw i64 %m_i, %n_i
... If not, then I don't think we can say "Monotonic + Monotonic = Monotonic", since There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. if There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Okay, then I think the logic can be simplified. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @kasuga-fj Expressions like There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @nikic I see, thanks for letting me know. |
||
} | ||
return Result; | ||
} | ||
|
||
MonotonicityType | ||
SCEVSignedMonotonicityChecker::unknownMonotonicity(const SCEV *Expr) { | ||
LLVM_DEBUG(dbgs() << "Failed to prove monotonicity for: " << *Expr << "\n"); | ||
return MonotonicityType::Unknown; | ||
} | ||
|
||
bool SCEVSignedMonotonicityChecker::isLoopInvariant(const SCEV *Expr) const { | ||
return !OutermostLoop || SE->isLoopInvariant(Expr, OutermostLoop); | ||
} | ||
|
||
MonotonicityType | ||
SCEVSignedMonotonicityChecker::visitAddRecExpr(const SCEVAddRecExpr *Expr) { | ||
if (!Expr->isAffine()) | ||
return unknownMonotonicity(Expr); | ||
|
||
const SCEV *Start = Expr->getStart(); | ||
const SCEV *Step = Expr->getStepRecurrence(*SE); | ||
|
||
MonotonicityType StartRes = visit(Start); | ||
if (StartRes == MonotonicityType::Unknown) | ||
return unknownMonotonicity(Expr); | ||
|
||
MonotonicityType StepRes = visit(Step); | ||
if (StepRes != MonotonicityType::Invariant) | ||
return unknownMonotonicity(Expr); | ||
|
||
// TODO: Enhance the inference here. | ||
if (!Expr->hasNoSignedWrap() && !NoWrapFromGEP) { | ||
if (!SE->isKnownNegative(Step)) | ||
// If the coefficient can be positive value, ensure that the AddRec is | ||
// monotonically increasing. | ||
if (!SE->isKnownOnEveryIteration(ICmpInst::ICMP_SGE, Expr, Start)) | ||
return unknownMonotonicity(Expr); | ||
|
||
if (!SE->isKnownPositive(Step)) | ||
// If the coefficient can be positive value, ensure that the AddRec is | ||
// monotonically decreasing. | ||
if (!SE->isKnownOnEveryIteration(ICmpInst::ICMP_SLE, Expr, Start)) | ||
return unknownMonotonicity(Expr); | ||
} | ||
|
||
bool IsKnownNonZero = SE->isKnownNonZero(Step); | ||
switch (StartRes) { | ||
case MonotonicityType::Unknown: | ||
llvm_unreachable("should have been handled above"); | ||
case MonotonicityType::NoSignedWrap: | ||
return MonotonicityType::NoSignedWrap; | ||
case MonotonicityType::Invariant: | ||
return IsKnownNonZero ? MonotonicityType::MultiMonotonic | ||
: MonotonicityType::NoSignedWrap; | ||
case MonotonicityType::MultiMonotonic: | ||
// TODO: Should handle SCEV like `{{0,+,-1}<%loop>,+,1}<%loop>`? | ||
return IsKnownNonZero ? MonotonicityType::MultiMonotonic | ||
: MonotonicityType::NoSignedWrap; | ||
} | ||
llvm_unreachable("unhandled MonotonicityType"); | ||
} | ||
|
||
MonotonicityType SCEVSignedMonotonicityChecker::visitZeroExtendExpr( | ||
const SCEVZeroExtendExpr *Expr) { | ||
return visit(Expr->getOperand()); | ||
} | ||
|
||
MonotonicityType SCEVSignedMonotonicityChecker::visitSignExtendExpr( | ||
const SCEVSignExtendExpr *Expr) { | ||
return visit(Expr->getOperand()); | ||
} | ||
|
||
MonotonicityType | ||
SCEVSignedMonotonicityChecker::visitUnknown(const SCEVUnknown *Expr) { | ||
if (!isLoopInvariant(Expr)) | ||
return unknownMonotonicity(Expr); | ||
return MonotonicityType::Invariant; | ||
} | ||
|
||
/// Check if we can delinearize the subscripts. If the SCEVs representing the | ||
/// source and destination array references are recurrences on a nested loop, | ||
/// this function flattens the nested recurrences into separate recurrences | ||
|
@@ -3500,12 +3794,37 @@ bool DependenceInfo::tryDelinearizeParametricSize( | |
// to the dependency checks. | ||
if (!DisableDelinearizationChecks) | ||
for (size_t I = 1; I < Size; ++I) { | ||
const Loop *OutermostLoop = | ||
LI->getLoopFor(Src->getParent())->getOutermostLoop(); | ||
|
||
// TODO: In general, reasoning about monotonicity of a subscript from the | ||
// base pointer would lead incorrect result. Probably we need to check | ||
// the loops associated with this subscript are disjoint from those | ||
// associated with the other subscripts. The validation would be | ||
// something like: | ||
// | ||
// LoopsI = collectCommonLoops(SrcSubscripts[I]) | ||
// LoopsOthers = collectCommonLoops(SrcSCEV - SrcSubscripts[I]) | ||
// CanUsePtr = (LoopsI intersect LoopsOthers) is empty. | ||
// | ||
MonotonicityType SrcMonotonicity = | ||
SCEVSignedMonotonicityChecker::checkMonotonicity( | ||
SE, SrcSubscripts[I], OutermostLoop, SrcPtr); | ||
if (SrcMonotonicity == MonotonicityType::Unknown) | ||
return false; | ||
|
||
if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr)) | ||
return false; | ||
|
||
if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1])) | ||
return false; | ||
|
||
MonotonicityType DstMonotonicity = | ||
SCEVSignedMonotonicityChecker::checkMonotonicity( | ||
SE, DstSubscripts[I], OutermostLoop, DstPtr); | ||
if (DstMonotonicity == MonotonicityType::Unknown) | ||
return false; | ||
|
||
if (!isKnownNonNegative(DstSubscripts[I], DstPtr)) | ||
return false; | ||
|
||
|
@@ -3679,11 +3998,23 @@ DependenceInfo::depends(Instruction *Src, Instruction *Dst, | |
Pair[0].Src = SrcSCEV; | ||
Pair[0].Dst = DstSCEV; | ||
|
||
const Loop *OutermostLoop = SrcLoop ? SrcLoop->getOutermostLoop() : nullptr; | ||
if (SCEVSignedMonotonicityChecker::checkMonotonicity( | ||
SE, SrcEv, OutermostLoop, SrcPtr) == MonotonicityType::Unknown) | ||
return std::make_unique<Dependence>(Src, Dst, | ||
SCEVUnionPredicate(Assume, *SE)); | ||
if (SCEVSignedMonotonicityChecker::checkMonotonicity( | ||
SE, DstEv, OutermostLoop, DstPtr) == MonotonicityType::Unknown) | ||
return std::make_unique<Dependence>(Src, Dst, | ||
SCEVUnionPredicate(Assume, *SE)); | ||
|
||
if (Delinearize) { | ||
if (tryDelinearize(Src, Dst, Pair)) { | ||
LLVM_DEBUG(dbgs() << " delinearized\n"); | ||
Pairs = Pair.size(); | ||
} | ||
// TODO: Check that the original offsets are monotonic when delinearization | ||
// fails. | ||
} | ||
|
||
for (unsigned P = 0; P < Pairs; ++P) { | ||
|
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Possibly remove the "Outermost", does not necessarily need to be an outermost loop.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I feel it's safer to make this outermost. Otherwise, unexpected behavior might occur in cases like below
llvm-project/llvm/test/Analysis/DependenceAnalysis/monotonic.ll
Lines 336 to 379 in b5ca793