Skip to content
73 changes: 71 additions & 2 deletions mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1027,6 +1027,70 @@ struct WgToSgVectorShapeCastOp
}
};

/// Pattern for lowering vector.multi_reduction op to subgroup level.
/// Current limitation: the sg_layout in the reduced dimension being 1
/// so that reduction is local to subgroup & no cross-subgroup communication is
/// needed.
/// TODO: Add cases to handle more general situations which require SLM access.
struct WgToSgMultiDimReductionOp
: public OpConversionPattern<vector::MultiDimReductionOp> {
using OpConversionPattern<vector::MultiDimReductionOp>::OpConversionPattern;

LogicalResult
matchAndRewrite(vector::MultiDimReductionOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType srcType = op.getSourceVectorType();
VectorType dstType = dyn_cast<VectorType>(op.getResult().getType());
if (!dstType)
return failure();

auto srcShape = srcType.getShape();
xegpu::DistributeLayoutAttr layout =
xegpu::getDistributeLayoutAttr(op.getResult());
if (!layout || !layout.isForWorkgroup())
return failure();

auto reductionDims = llvm::to_vector(op.getReductionDims());

SmallVector<int64_t> sgLayout = llvm::cast<xegpu::SliceAttr>(layout)
.getParent()
.getEffectiveSgLayoutAsInt();
SmallVector<int64_t> sgData = llvm::cast<xegpu::SliceAttr>(layout)
.getParent()
.getEffectiveSgDataAsInt();

// Check that the sgLayout in the reduced dimension is 1 and
// each sg gets the entire slice to reduce.
for (int64_t dim : reductionDims) {
if (sgLayout[dim] != 1 || sgData[dim] != srcShape[dim])
return rewriter.notifyMatchFailure(
op,
"sgLayout in each reduced dimension must be 1 and sgData in the "
"reduced dim must match srcShape in that dim");
}

SmallVector<int64_t> sgShape = getSgShapeAndCount(srcShape, layout).first;

VectorType newDstType =
VectorType::get({sgShape}, dstType.getElementType());

SmallVector<Value> newReductions;
for (auto sgSrc : adaptor.getSource()) {
auto newOp = rewriter.create<vector::MultiDimReductionOp>(
op.getLoc(), newDstType, op.getKind(), sgSrc, adaptor.getAcc()[0],
op.getReductionDims());
if (!layout.getEffectiveLaneLayoutAsInt().empty() ||
!layout.getEffectiveInstDataAsInt().empty())
xegpu::setDistributeLayoutAttr(newOp->getResult(0),
layout.dropSgLayoutAndData());
newReductions.push_back(newOp.getResult());
}

rewriter.replaceOpWithMultiple(op, {newReductions});
return success();
}
};

} // namespace

namespace mlir {
Expand All @@ -1040,8 +1104,8 @@ void populateXeGPUWgToSgDistributePatterns(RewritePatternSet &patterns) {
WgToSgElementwiseOp, WgToSgVectorBroadcastOp, WgToSgConvertLayoutOp,
WgToSgArithConstantOp, WgToSgLoadGatherOpWithOffset,
WgToSgStoreScatterOpWithOffset, WgToSgLoadMatrixOp,
WgToSgStoreMatrixOp, WgToSgVectorStepOp, WgToSgVectorShapeCastOp>(
patterns.getContext());
WgToSgStoreMatrixOp, WgToSgVectorStepOp, WgToSgVectorShapeCastOp,
WgToSgMultiDimReductionOp>(patterns.getContext());
}
} // namespace xegpu
} // namespace mlir
Expand Down Expand Up @@ -1195,6 +1259,11 @@ void XeGPUWgToSgDistributePass::runOnOperation() {
return isLegal(xegpu::getDistributeLayoutAttr(op.getResult()));
});

target.addDynamicallyLegalOp<vector::MultiDimReductionOp>(
[=](vector::MultiDimReductionOp op) -> bool {
return isLegal(xegpu::getDistributeLayoutAttr(op.getResult()));
});

target.addDynamicallyLegalOp<xegpu::ConvertLayoutOp>(
[=](xegpu::ConvertLayoutOp op) -> bool {
return isLegal(op.getInputLayout()) && isLegal(op.getTargetLayout());
Expand Down
16 changes: 16 additions & 0 deletions mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-unify-ops-rr.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -82,4 +82,20 @@ gpu.module @test_distribution {
: vector<256x128xf16>, vector<128x256xf16> -> vector<256x256xf32>
gpu.return
}

// CHECK-LABEL: vector_reduce_dim_1
gpu.func @vector_reduce_dim_1(%src: memref<256x64xf32>) {
// CHECK: %[[CST:.*]] = arith.constant dense<1.000000e+00> : vector<16xf32>
%cst = arith.constant {layout_result_0 = #xegpu.slice<#xegpu.layout<sg_layout = [8, 1], sg_data = [16, 64]>, dims = [1]>} dense<1.0> : vector<256xf32>
%tdesc = xegpu.create_nd_tdesc %src : memref<256x64xf32>
-> !xegpu.tensor_desc<256x64xf32, #xegpu.layout<sg_layout = [8, 1], sg_data = [16, 64]>>
%load = xegpu.load_nd %tdesc[0, 0]
: !xegpu.tensor_desc<256x64xf32, #xegpu.layout<sg_layout = [8, 1], sg_data = [16, 64]>>
-> vector<256x64xf32>
// CHECK-COUNT-2: vector.multi_reduction <add>, {{.*}}, %[[CST]] [1] : vector<16x64xf32> to vector<16xf32>
// CHECK-NOT: vector.multi_reduction
%reduce = vector.multi_reduction <add>, %load, %cst {layout_result_0 = #xegpu.slice<#xegpu.layout<sg_layout = [8, 1], sg_data = [16, 64]>, dims = [1]>} [1]
: vector<256x64xf32> to vector<256xf32>
gpu.return
}
}
40 changes: 40 additions & 0 deletions mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-unify-ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -367,6 +367,46 @@ gpu.module @test_distribution {
gpu.return
}

// CHECK-LABEL: @vector_reduce_dim_0
gpu.func @vector_reduce_dim_0(%src: memref<4x128xf32>) {
%cst = arith.constant {layout_result_0 = #xegpu.slice<#xegpu.layout<sg_layout = [1, 32], sg_data = [4, 4]>, dims = [0]>} dense<1.0> : vector<128xf32>
%tdesc = xegpu.create_nd_tdesc %src : memref<4x128xf32>
-> !xegpu.tensor_desc<4x128xf32, #xegpu.layout<sg_layout = [1, 32], sg_data = [4, 4]>>
%load = xegpu.load_nd %tdesc[0, 0]
: !xegpu.tensor_desc<4x128xf32, #xegpu.layout<sg_layout = [1, 32], sg_data = [4, 4]>>
-> vector<4x128xf32>
// CHECK: vector.multi_reduction <add>, {{.*}}, {{.*}} [0] : vector<4x4xf32> to vector<4xf32>
%reduce = vector.multi_reduction <add>, %load, %cst {layout_result_0 = #xegpu.slice<#xegpu.layout<sg_layout = [1, 32], sg_data = [4, 4]>, dims = [0]>} [0]
: vector<4x128xf32> to vector<128xf32>
gpu.return
}

// CHECK-LABEL: @vector_reduce_dim_1
gpu.func @vector_reduce_dim_1(%src: memref<256x64xf32>) {
%cst = arith.constant {layout_result_0 = #xegpu.slice<#xegpu.layout<sg_layout = [16, 1], sg_data = [16, 64]>, dims = [1]>} dense<1.0> : vector<256xf32>
%tdesc = xegpu.create_nd_tdesc %src : memref<256x64xf32>
-> !xegpu.tensor_desc<256x64xf32, #xegpu.layout<sg_layout = [16, 1], sg_data = [16, 64]>>
%load = xegpu.load_nd %tdesc[0, 0]
: !xegpu.tensor_desc<256x64xf32, #xegpu.layout<sg_layout = [16, 1], sg_data = [16, 64]>>
-> vector<256x64xf32>
// CHECK: vector.multi_reduction <add>, {{.*}}, {{.*}} [1] : vector<16x64xf32> to vector<16xf32>
%reduce = vector.multi_reduction <add>, %load, %cst {layout_result_0 = #xegpu.slice<#xegpu.layout<sg_layout = [16, 1], sg_data = [16, 64]>, dims = [1]>} [1]
: vector<256x64xf32> to vector<256xf32>
gpu.return
}

// CHECK-LABEL: @vector_reduce_4D
gpu.func @vector_reduce_4D(%src: ui64) {
%cst_acc = arith.constant {layout_result_0 = #xegpu.slice<#xegpu.layout<sg_layout = [4, 2, 6, 1], sg_data = [1, 1, 1, 32]>, dims = [3]>} dense<0.0> : vector<4x2x6xf16>
%offset = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [4, 2, 6, 1], sg_data = [1, 1, 1, 32]>} dense<0> : vector<4x2x6x32xindex>
%mask = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [4, 2, 6, 1], sg_data = [1, 1, 1, 32]>} dense<true> : vector<4x2x6x32xi1>
%load = xegpu.load %src[%offset], %mask {layout_result_0 = #xegpu.layout<sg_layout = [4, 2, 6, 1], sg_data = [1, 1, 1, 32]>} : ui64, vector<4x2x6x32xindex>, vector<4x2x6x32xi1> -> vector<4x2x6x32xf16>
// CHECK: vector.multi_reduction <add>, {{.*}}, {{.*}} [3] : vector<1x1x1x32xf16> to vector<1x1x1xf16>
%reduce = vector.multi_reduction <add>, %load, %cst_acc {layout_result_0 = #xegpu.slice<#xegpu.layout<sg_layout = [4, 2, 6, 1], sg_data = [1, 1, 1, 32]>, dims = [3]>} [3]
: vector<4x2x6x32xf16> to vector<4x2x6xf16>
gpu.return
}

// CHECK-LABEL: vector_step_op
gpu.func @vector_step_op_slice_attr() {
//CHECK: [[sgId:%.+]] = gpu.subgroup_id : index
Expand Down