-
Notifications
You must be signed in to change notification settings - Fork 15.5k
[libc][math] Implement C23 half precision pow function #159906
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
AnonMiraj
wants to merge
13
commits into
llvm:main
Choose a base branch
from
AnonMiraj:origin/add_powf16
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 2 commits
Commits
Show all changes
13 commits
Select commit
Hold shift + click to select a range
f433dfd
[libc][math] Implement C23 half precision pow function
AnonMiraj 21275a3
fix formatting
AnonMiraj 7db8703
add missing argument in math.yml
AnonMiraj 7a8db3f
remove optimzation option
AnonMiraj 7bb9c40
make tests exaustive
AnonMiraj 28d52f6
update log poly to double
AnonMiraj 13dd3ff
fix powf16 tests
AnonMiraj ba92b59
update powf16 approach
AnonMiraj 561dd53
update tests
AnonMiraj fc0f59e
Merge branch 'main' into origin/add_powf16
AnonMiraj 2a83767
fix build failure
AnonMiraj 9652c18
handle LIBC_TARGET_CPU_HAS_FMA_DOUBLE
AnonMiraj 54e3d60
ensure f16 literals are used in smoke test
AnonMiraj File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,296 @@ | ||
| //===-- Half-precision x^y function ---------------------------------------===// | ||
| // | ||
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| // See https://llvm.org/LICENSE.txt for license information. | ||
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| // | ||
| //===----------------------------------------------------------------------===// | ||
|
|
||
| #include "src/math/powf16.h" | ||
| #include "hdr/errno_macros.h" | ||
| #include "hdr/fenv_macros.h" | ||
| #include "src/__support/CPP/bit.h" | ||
| #include "src/__support/FPUtil/FEnvImpl.h" | ||
| #include "src/__support/FPUtil/FPBits.h" | ||
| #include "src/__support/FPUtil/PolyEval.h" | ||
| #include "src/__support/FPUtil/cast.h" | ||
| #include "src/__support/FPUtil/multiply_add.h" | ||
| #include "src/__support/FPUtil/nearest_integer.h" | ||
| #include "src/__support/FPUtil/sqrt.h" | ||
| #include "src/__support/common.h" | ||
| #include "src/__support/macros/config.h" | ||
| #include "src/__support/macros/optimization.h" | ||
| #include "src/__support/macros/properties/types.h" | ||
| #include "src/__support/math/expxf16_utils.h" | ||
|
|
||
| namespace LIBC_NAMESPACE_DECL { | ||
|
|
||
| namespace { | ||
|
|
||
| bool is_odd_integer(float16 x) { | ||
| using FPBits = fputil::FPBits<float16>; | ||
| FPBits xbits(x); | ||
| uint16_t x_u = xbits.uintval(); | ||
| unsigned x_e = static_cast<unsigned>(xbits.get_biased_exponent()); | ||
| unsigned lsb = static_cast<unsigned>( | ||
| cpp::countr_zero(static_cast<uint32_t>(x_u | FPBits::EXP_MASK))); | ||
| constexpr unsigned UNIT_EXPONENT = | ||
| static_cast<unsigned>(FPBits::EXP_BIAS + FPBits::FRACTION_LEN); | ||
| return (x_e + lsb == UNIT_EXPONENT); | ||
| } | ||
|
|
||
| bool is_integer(float16 x) { | ||
| using FPBits = fputil::FPBits<float16>; | ||
| FPBits xbits(x); | ||
| uint16_t x_u = xbits.uintval(); | ||
| unsigned x_e = static_cast<unsigned>(xbits.get_biased_exponent()); | ||
| unsigned lsb = static_cast<unsigned>( | ||
| cpp::countr_zero(static_cast<uint32_t>(x_u | FPBits::EXP_MASK))); | ||
| constexpr unsigned UNIT_EXPONENT = | ||
| static_cast<unsigned>(FPBits::EXP_BIAS + FPBits::FRACTION_LEN); | ||
| return (x_e + lsb >= UNIT_EXPONENT); | ||
| } | ||
|
|
||
| } // namespace | ||
|
|
||
| LLVM_LIBC_FUNCTION(float16, powf16, (float16 x, float16 y)) { | ||
| using FPBits = fputil::FPBits<float16>; | ||
|
|
||
| FPBits xbits(x), ybits(y); | ||
| bool x_sign = xbits.is_neg(); | ||
| bool y_sign = ybits.is_neg(); | ||
|
|
||
| FPBits x_abs = xbits.abs(); | ||
| FPBits y_abs = ybits.abs(); | ||
|
|
||
| uint16_t x_u = xbits.uintval(); | ||
| uint16_t x_a = x_abs.uintval(); | ||
| uint16_t y_a = y_abs.uintval(); | ||
| bool result_sign = false; | ||
|
|
||
| ///////// BEGIN - Check exceptional cases //////////////////////////////////// | ||
| // If x or y is signaling NaN | ||
| if (xbits.is_signaling_nan() || ybits.is_signaling_nan()) { | ||
| fputil::raise_except_if_required(FE_INVALID); | ||
| return FPBits::quiet_nan().get_val(); | ||
| } | ||
|
|
||
| // | ||
| if (LIBC_UNLIKELY(ybits.is_zero() || x_u == FPBits::one().uintval() || | ||
| x_u >= FPBits::inf().uintval() || | ||
| x_u < FPBits::min_normal().uintval())) { | ||
| // pow(x, 0) = 1 | ||
| if (ybits.is_zero()) { | ||
| return fputil::cast<float16>(1.0f); | ||
| } | ||
|
|
||
| // pow(1, Y) = 1 | ||
| if (x_u == FPBits::one().uintval()) { | ||
| return fputil::cast<float16>(1.0f); | ||
| } | ||
|
|
||
| switch (y_a) { | ||
|
|
||
| case 0x3800U: { // y = +-0.5 | ||
| if (LIBC_UNLIKELY( | ||
| (x == 0.0 || x_u == FPBits::inf(Sign::NEG).uintval()))) { | ||
| // pow(-0, 1/2) = +0 | ||
| // pow(-inf, 1/2) = +inf | ||
| // Make sure it works correctly for FTZ/DAZ. | ||
| return fputil::cast<float16>(y_sign ? (1.0 / (x * x)) : (x * x)); | ||
| } | ||
| return fputil::cast<float16>(y_sign ? (1.0 / fputil::sqrt<float16>(x)) | ||
| : fputil::sqrt<float16>(x)); | ||
| } | ||
| case 0x3c00U: // y = +-1.0 | ||
| return fputil::cast<float16>(y_sign ? (1.0 / x) : x); | ||
|
|
||
| case 0x4000U: // y = +-2.0 | ||
| return fputil::cast<float16>(y_sign ? (1.0 / (x * x)) : (x * x)); | ||
| } | ||
| // TODO: Speed things up with pow(2, y) = exp2(y) and pow(10, y) = exp10(y). | ||
|
|
||
| // Propagate remaining quiet NaNs. | ||
| if (xbits.is_quiet_nan()) { | ||
| return x; | ||
| } | ||
| if (ybits.is_quiet_nan()) { | ||
| return y; | ||
| } | ||
|
|
||
| // x = -1: special case for integer exponents | ||
| if (x_u == FPBits::one(Sign::NEG).uintval()) { | ||
| if (is_integer(y)) { | ||
| if (is_odd_integer(y)) { | ||
| return fputil::cast<float16>(-1.0f); | ||
| } else { | ||
| return fputil::cast<float16>(1.0f); | ||
| } | ||
| } | ||
| // pow(-1, non-integer) = NaN | ||
| fputil::set_errno_if_required(EDOM); | ||
| fputil::raise_except_if_required(FE_INVALID); | ||
| return FPBits::quiet_nan().get_val(); | ||
| } | ||
|
|
||
| // x = 0 cases | ||
| if (xbits.is_zero()) { | ||
| if (y_sign) { | ||
| // pow(+-0, negative) = +-inf and raise FE_DIVBYZERO | ||
| fputil::raise_except_if_required(FE_DIVBYZERO); | ||
| bool result_neg = x_sign && ybits.is_finite() && is_odd_integer(y); | ||
| return FPBits::inf(result_neg ? Sign::NEG : Sign::POS).get_val(); | ||
| } else { | ||
| // pow(+-0, positive) = +-0 | ||
| bool out_is_neg = x_sign && is_odd_integer(y); | ||
| return out_is_neg ? FPBits::zero(Sign::NEG).get_val() | ||
| : FPBits::zero(Sign::POS).get_val(); | ||
| } | ||
| } | ||
|
|
||
| if (xbits.is_inf()) { | ||
| bool out_is_neg = x_sign && ybits.is_finite() && is_odd_integer(y); | ||
| if (y_sign) // pow(+-inf, negative) = +-0 | ||
| return out_is_neg ? FPBits::zero(Sign::NEG).get_val() | ||
| : FPBits::zero(Sign::POS).get_val(); | ||
| // pow(+-inf, positive) = +-inf | ||
| return FPBits::inf(out_is_neg ? Sign::NEG : Sign::POS).get_val(); | ||
| } | ||
|
|
||
| // y = +-inf cases | ||
| if (ybits.is_inf()) { | ||
| // pow(1, inf) handled above. | ||
| bool x_abs_less_than_one = x_a < FPBits::one().uintval(); | ||
| if ((x_abs_less_than_one && !y_sign) || | ||
| (!x_abs_less_than_one && y_sign)) { | ||
| return fputil::cast<float16>(0.0f); | ||
| } else { | ||
| return FPBits::inf().get_val(); | ||
| } | ||
| } | ||
|
|
||
| // pow( negative, non-integer ) = NaN | ||
| if (x_sign && !is_integer(y)) { | ||
| fputil::set_errno_if_required(EDOM); | ||
| fputil::raise_except_if_required(FE_INVALID); | ||
| return FPBits::quiet_nan().get_val(); | ||
| } | ||
|
|
||
| // For negative x with integer y, compute pow(|x|, y) and adjust sign | ||
| if (x_sign) { | ||
| x = -x; | ||
| if (is_odd_integer(y)) { | ||
| result_sign = true; | ||
| } | ||
| } | ||
| } | ||
| ///////// END - Check exceptional cases ////////////////////////////////////// | ||
|
|
||
| // x^y = 2^( y * log2(x) ) | ||
| // = 2^( y * ( e_x + log2(m_x) ) ) | ||
| // First we compute log2(x) = e_x + log2(m_x) | ||
|
|
||
| using namespace math::expxf16_internal; | ||
| FPBits x_bits(x); | ||
|
|
||
| uint16_t x_u_log = x_bits.uintval(); | ||
|
|
||
| // Extract exponent field of x. | ||
| int m = -FPBits::EXP_BIAS; | ||
|
|
||
| // When x is subnormal, normalize it by multiplying by 2^FRACTION_LEN. | ||
| if ((x_u_log & FPBits::EXP_MASK) == 0U) { | ||
| constexpr float NORMALIZE_EXP = | ||
| static_cast<float>(1U << FPBits::FRACTION_LEN); | ||
| x_bits = FPBits(x_bits.get_val() * fputil::cast<float16>(NORMALIZE_EXP)); | ||
| x_u_log = x_bits.uintval(); | ||
| m -= FPBits::FRACTION_LEN; | ||
| } | ||
|
|
||
| // Extract the mantissa and index into small lookup tables. | ||
| uint16_t mant = x_bits.get_mantissa(); | ||
| // Use the highest 5 fractional bits of the mantissa as the index f. | ||
| int f = mant >> 5; | ||
|
|
||
| m += (x_u_log >> FPBits::FRACTION_LEN); | ||
|
|
||
| // Add the hidden bit to the mantissa. | ||
| // 1 <= m_x < 2 | ||
| x_bits.set_biased_exponent(FPBits::EXP_BIAS); | ||
| float mant_f = x_bits.get_val(); | ||
|
|
||
| // Range reduction for log2(m_x): | ||
| // v = r * m_x - 1, where r is a power of 2 from a lookup table. | ||
| // The computation is exact for half-precision, and -2^-5 <= v < 2^-4. | ||
| // Then m_x = (1 + v) / r, and log2(m_x) = log2(1 + v) - log2(r). | ||
|
|
||
| float v = fputil::multiply_add(mant_f, ONE_OVER_F_F[f], -1.0f); | ||
|
|
||
| // For half-precision accuracy, we use a degree-2 polynomial approximation: | ||
| // P(v) ~ log2(1 + v) / v | ||
| // Generated by Sollya with: | ||
| // > P = fpminimax(log2(1+x)/x, 2, [|D...|], [-2^-5, 2^-4]); | ||
| // The coefficients are rounded from the Sollya output. | ||
| float log2p1_d_over_f = | ||
| v * fputil::polyeval(v, 0x1.715476p+0f, -0x1.71771ap-1f, 0x1.ecb38ep-2f); | ||
|
|
||
| // log2(1.mant) = log2(f) + log2(1 + v) | ||
| float log2_1_mant = LOG2F_F[f] + log2p1_d_over_f; | ||
|
|
||
| // Complete log2(x) = e_x + log2(m_x) | ||
| float log2_x = static_cast<float>(m) + log2_1_mant; | ||
|
|
||
| // z = y * log2(x) | ||
| // Now compute 2^z = 2^(n + r), with n integer and r in [-0.5, 0.5]. | ||
| double z = fputil::cast<double>(y) * log2_x; | ||
|
|
||
| // Check for overflow/underflow for half-precision. | ||
| // Half-precision range is approximately 2^-24 to 2^15. | ||
| if (z > 15.0) { | ||
| fputil::raise_except_if_required(FE_OVERFLOW); | ||
| return FPBits::inf().get_val(); | ||
| } | ||
| if (z < -24.0) { | ||
| fputil::raise_except_if_required(FE_UNDERFLOW); | ||
| return fputil::cast<float16>(0.0f); | ||
| } | ||
|
|
||
| double n = fputil::nearest_integer(z); | ||
| double r = z - n; | ||
|
|
||
| // Compute 2^r using a degree-7 polynomial for r in [-0.5, 0.5]. | ||
| // Generated by Sollya with: | ||
| // > P = fpminimax(2^x, 7, [|D...|], [-0.5, 0.5]); | ||
| // The polynomial coefficients are rounded from the Sollya output. | ||
| constexpr double EXP2_COEFFS[] = { | ||
| 0x1p+0, // 1.0 | ||
| 0x1.62e42fefa39efp-1, // ln(2) | ||
| 0x1.ebfbdff82c58fp-3, // ln(2)^2 / 2 | ||
| 0x1.c6b08d704a0c0p-5, // ln(2)^3 / 6 | ||
| 0x1.3b2ab6fba4e77p-7, // ln(2)^4 / 24 | ||
| 0x1.5d87fe78a6737p-10, // ln(2)^5 / 120 | ||
| 0x1.430912f86a805p-13, // ln(2)^6 / 720 | ||
| 0x1.10e4104ac8015p-17 // ln(2)^7 / 5040 | ||
| }; | ||
|
|
||
| double exp2_r = fputil::polyeval( | ||
| r, EXP2_COEFFS[0], EXP2_COEFFS[1], EXP2_COEFFS[2], EXP2_COEFFS[3], | ||
| EXP2_COEFFS[4], EXP2_COEFFS[5], EXP2_COEFFS[6], EXP2_COEFFS[7]); | ||
|
|
||
| // Compute 2^n by direct bit manipulation. | ||
| int n_int = static_cast<int>(n); | ||
| uint64_t exp_bits = static_cast<uint64_t>(n_int + 1023) << 52; | ||
| double pow2_n = cpp::bit_cast<double>(exp_bits); | ||
|
|
||
| float16 result = fputil::cast<float16>(pow2_n * exp2_r); | ||
|
|
||
| if (result_sign) { | ||
| FPBits result_bits(result); | ||
| result_bits.set_sign(Sign::NEG); | ||
| result = result_bits.get_val(); | ||
| } | ||
|
|
||
| return result; | ||
| } | ||
|
|
||
| } // namespace LIBC_NAMESPACE_DECL |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.