Skip to content
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 16 additions & 4 deletions mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -145,8 +145,21 @@ XeGPUBlockingPass::getTileShape(const T &operandOrResult) const {
xegpu::DistributeLayoutAttr layout =
xegpu::getDistributeLayoutAttr(operandOrResult);
if (layout && layout.isForSubgroup()) {
if (!layout.getEffectiveInstDataAsInt().empty())
return layout.getEffectiveInstDataAsInt();
if (!layout.getEffectiveInstDataAsInt().empty()) {
SmallVector<int64_t> instData = layout.getEffectiveInstDataAsInt();
// Remove leading unit dimensions from inst_data
// Skip it for xegpu nd ops since it will be 2D
Operation *definingOp = value.getDefiningOp();
bool skipLeadingUnitDimRemoval =
definingOp &&
(isa<xegpu::CreateNdDescOp, xegpu::LoadNdOp, xegpu::DpasOp,
xegpu::StoreNdOp, xegpu::PrefetchNdOp>(definingOp));
if (!skipLeadingUnitDimRemoval) {
while (!instData.empty() && instData.front() == 1)
instData.erase(instData.begin());
}
return instData;
}

if (auto type = dyn_cast<ShapedType>(value.getType()))
return llvm::to_vector(type.getShape());
Expand Down Expand Up @@ -354,7 +367,6 @@ void XeGPUBlockingPass::runOnOperation() {
// To create a new attribute with a different chunk_size:
auto newEncoding = xegpu::ScatterTensorDescAttr::get(
ctx, tdescTy.getMemorySpace(), blockedChunkSize);

encoding = newEncoding;
}
}
Expand All @@ -363,7 +375,7 @@ void XeGPUBlockingPass::runOnOperation() {
xegpu::TensorDescType::get(ctx, tileShape, elemTy, encoding,
tdescTy.getLayoutAttr().dropInstData());
} else {
newTy = type.clone(tileShape, elemTy);
newTy = VectorType::get(tileShape, elemTy);
}

if (returnSingleType)
Expand Down
6 changes: 1 addition & 5 deletions mlir/lib/Dialect/XeGPU/Transforms/XeGPUUnroll.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -66,8 +66,6 @@ struct UnrollPattern : public OpRewritePattern<SourceOp> {
Value unpack(ValueRange srcs, Type destTy, ArrayRef<int64_t> blockSize,
Location loc, PatternRewriter &rewriter) const {
if (auto vecTy = dyn_cast<VectorType>(destTy)) {
assert(vecTy.getRank() == static_cast<int64_t>(blockSize.size()) &&
"Expecting blockSize size to match the rank of destTy.");
auto shape = vecTy.getShape();
return xegpu::createVectorWithShapeFromValues(rewriter, loc, srcs, shape);
}
Expand All @@ -93,8 +91,6 @@ struct UnrollPattern : public OpRewritePattern<SourceOp> {
ArrayRef<int64_t> blockSize, Location loc,
PatternRewriter &rewriter) const {
if (auto vecTy = dyn_cast<VectorType>(src.getType())) {
assert(vecTy.getRank() == static_cast<int64_t>(blockSize.size()) &&
"Expecting blockSize size to match the rank of src.");
return xegpu::extractVectorsWithShapeFromValue(rewriter, loc, src,
blockSize);
}
Expand Down Expand Up @@ -635,7 +631,7 @@ struct UnrollLoadGatherOpWithOffset
VectorType maskTy = llvm::dyn_cast<VectorType>(mask.getType());
VectorType offsetsTy = llvm::dyn_cast<VectorType>(offsets.getType());
Type elemTy = valueTy.getElementType();
VectorType newValueTy = valueTy.cloneWith(*targetShape, elemTy);
VectorType newValueTy = VectorType::get(*targetShape, elemTy);

SmallVector<Type> convertedMaskTypes;
SmallVector<Value> convertedMasks;
Expand Down
27 changes: 23 additions & 4 deletions mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -246,11 +246,30 @@ xegpu::extractVectorsWithShapeFromValue(OpBuilder &builder, Location loc,
if (!computeShapeRatio(srcShape, shape))
return {value};

int64_t srcShapeRank = srcShape.size();
int64_t targetShapeRank = shape.size();

SmallVector<int64_t> adjustedTargetShape(srcShape.size());
int64_t rankDiff = srcShapeRank - targetShapeRank;
std::fill(adjustedTargetShape.begin(), adjustedTargetShape.begin() + rankDiff,
1);
std::copy(shape.begin(), shape.end(), adjustedTargetShape.begin() + rankDiff);

int64_t adjustedTargetShapeRank = adjustedTargetShape.size();

SmallVector<Value> result;
for (SmallVector<int64_t> offsets : StaticTileOffsetRange(srcShape, shape)) {
for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(srcShape, adjustedTargetShape)) {
SmallVector<int64_t> staticStrides(offsets.size(), 1);
result.push_back(vector::ExtractStridedSliceOp::create(
builder, loc, value, offsets, shape, staticStrides));
Value slice = vector::ExtractStridedSliceOp::create(
builder, loc, value, offsets, adjustedTargetShape, staticStrides);

// Reshape to remove leading unit dims if needed
if (adjustedTargetShapeRank > targetShapeRank) {
auto targetTy = VectorType::get(shape, vecTy.getElementType());
slice = builder.create<vector::ShapeCastOp>(loc, targetTy, slice);
}
result.push_back(slice);
}

return result;
Expand All @@ -274,7 +293,7 @@ Value xegpu::createVectorWithShapeFromValues(OpBuilder &builder, Location loc,

for (auto [src, offsets] :
llvm::zip_equal(values, StaticTileOffsetRange(shape, tileShape))) {
SmallVector<int64_t> staticStrides(offsets.size(), 1);
SmallVector<int64_t> staticStrides(tileShape.size(), 1);
result = vector::InsertStridedSliceOp::create(builder, loc, src, result,
offsets, staticStrides);
}
Expand Down
70 changes: 70 additions & 0 deletions mlir/test/Dialect/XeGPU/xegpu-blocking.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -682,3 +682,73 @@ gpu.module @test_kernel {
gpu.return
}
}

// -----
gpu.module @test_kernel {
// CHECK-LABEL: load_gather
// CHECK-SAME: [[arg0:%.+]]: ui64
// CHECK: [[cst:%.+]] = arith.constant dense<0.000000e+00> : vector<1x1x32xf32>
// CHECK: [[cst_0:%.+]] = arith.constant dense<true> : vector<16xi1>
// CHECK: [[cst_1:%.+]] = arith.constant dense<[0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120]> : vector<16xindex>
// CHECK: [[cst_2:%.+]] = arith.constant dense<[128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248]> : vector<16xindex>
// CHECK: [[ld_0:%.+]] = xegpu.load [[arg0]][[[cst_1]]], [[cst_0]] <{chunk_size = 1 : i64, l1_hint = #xegpu.cache_hint<cached>}> : ui64, vector<16xindex>, vector<16xi1> -> vector<16xf32>
// CHECK: [[ld_1:%.+]] = xegpu.load [[arg0]][[[cst_2]]], [[cst_0]] <{chunk_size = 1 : i64, l1_hint = #xegpu.cache_hint<cached>}> : ui64, vector<16xindex>, vector<16xi1> -> vector<16xf32>
// CHECK: [[ins_0:%.+]] = vector.insert_strided_slice [[ld_0]], [[cst]] {offsets = [0, 0, 0], strides = [1]} : vector<16xf32> into vector<1x1x32xf32>
// CHECK: [[ins_1:%.+]] = vector.insert_strided_slice [[ld_1]], [[ins_0]] {offsets = [0, 0, 16], strides = [1]} : vector<16xf32> into vector<1x1x32xf32>
gpu.func @load_gather(%src: ui64) -> vector<1x1x32xf32> {
%cst = arith.constant {layout_result_0 = #xegpu.layout<inst_data = [1, 1, 16]>} dense<[[
[0, 8, 16, 24, 32, 40, 48, 56,
64, 72, 80, 88, 96, 104, 112, 120,
128, 136, 144, 152, 160, 168, 176, 184,
192, 200, 208, 216, 224, 232, 240, 248]
]]> : vector<1x1x32xindex>

%mask = arith.constant {layout_result_0 = #xegpu.layout<inst_data = [1, 1, 16]>} dense<true> : vector<1x1x32xi1>
%ld = xegpu.load %src[%cst], %mask {chunk_size = 1, layout_result_0 = #xegpu.layout<inst_data = [1, 1, 16]>, l1_hint = #xegpu.cache_hint<cached>} : ui64, vector<1x1x32xindex>, vector<1x1x32xi1> -> vector<1x1x32xf32>

gpu.return %ld : vector<1x1x32xf32>
}
}

// -----
#l = #xegpu.layout<inst_data = [1, 16]>
gpu.module @test_kernel {
// CHECK-LABEL: load_store_nd_with_offsets
// CHECK-SAME: [[arg0:%.+]]: memref<1024x1024xf32>, [[arg1:%.+]]: memref<1024x1024xf32>, [[arg2:%.+]]: memref<1024x1024xf32>
// CHECK-DAG: [[cst:%.+]] = arith.constant dense<0.000000e+00> : vector<1x32xf32>
// CHECK-DAG: [[c16:%.+]] = arith.constant 16 : index
// CHECK-DAG: [[c0:%.+]] = arith.constant 0 : index
// CHECK: [[tdesc_a:%.+]] = xegpu.create_nd_tdesc [[arg0]] : memref<1024x1024xf32> -> !xegpu.tensor_desc<1x16xf32>
// CHECK: [[tdesc_b:%.+]] = xegpu.create_nd_tdesc [[arg1]] : memref<1024x1024xf32> -> !xegpu.tensor_desc<1x16xf32>
// CHECK: [[tdesc_c:%.+]] = xegpu.create_nd_tdesc [[arg2]] : memref<1024x1024xf32> -> !xegpu.tensor_desc<1x16xf32>
// CHECK: [[ld_a0:%.+]] = xegpu.load_nd [[tdesc_a]][[[c0]], [[c0]]] : !xegpu.tensor_desc<1x16xf32> -> vector<1x16xf32>
// CHECK: [[ld_a1:%.+]] = xegpu.load_nd [[tdesc_a]][[[c0]], [[c16]]] : !xegpu.tensor_desc<1x16xf32> -> vector<1x16xf32>
// CHECK: [[ld_b0:%.+]] = xegpu.load_nd [[tdesc_b]][[[c0]], [[c0]]] : !xegpu.tensor_desc<1x16xf32> -> vector<1x16xf32>
// CHECK: [[ld_b1:%.+]] = xegpu.load_nd [[tdesc_b]][[[c0]], [[c16]]] : !xegpu.tensor_desc<1x16xf32> -> vector<1x16xf32>
// CHECK: [[cast_a0:%.+]] = vector.shape_cast [[ld_a0]] : vector<1x16xf32> to vector<16xf32>
// CHECK: [[cast_b0:%.+]] = vector.shape_cast [[ld_b0]] : vector<1x16xf32> to vector<16xf32>
// CHECK: [[add0:%.+]] = arith.addf [[cast_a0]], [[cast_b0]] : vector<16xf32>
// CHECK: [[ins0:%.+]] = vector.insert_strided_slice [[add0]], [[cst]] {offsets = [0, 0], strides = [1]} : vector<16xf32> into vector<1x32xf32>
// CHECK: [[cast_a1:%.+]] = vector.shape_cast [[ld_a1]] : vector<1x16xf32> to vector<16xf32>
// CHECK: [[cast_b1:%.+]] = vector.shape_cast [[ld_b1]] : vector<1x16xf32> to vector<16xf32>
// CHECK: [[add1:%.+]] = arith.addf [[cast_a1]], [[cast_b1]] : vector<16xf32>
// CHECK: [[ins1:%.+]] = vector.insert_strided_slice [[add1]], [[ins0]] {offsets = [0, 16], strides = [1]} : vector<16xf32> into vector<1x32xf32>
// CHECK: [[ext0:%.+]] = vector.extract_strided_slice [[ins1]] {offsets = [0, 0], sizes = [1, 16], strides = [1, 1]} : vector<1x32xf32> to vector<1x16xf32>
// CHECK: [[ext1:%.+]] = vector.extract_strided_slice [[ins1]] {offsets = [0, 16], sizes = [1, 16], strides = [1, 1]} : vector<1x32xf32> to vector<1x16xf32>
Comment on lines +735 to +737
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: canonicalize should remove these extracts and inserts. adding canonicalize may simplify your tests.

// CHECK: xegpu.store_nd [[ext0]], [[tdesc_c]][[[c0]], [[c0]]] : vector<1x16xf32>, !xegpu.tensor_desc<1x16xf32>
// CHECK: xegpu.store_nd [[ext1]], [[tdesc_c]][[[c0]], [[c16]]] : vector<1x16xf32>, !xegpu.tensor_desc<1x16xf32>
gpu.func @load_store_nd_with_offsets(%A: memref<1024x1024xf32>, %B: memref<1024x1024xf32>, %C: memref<1024x1024xf32>) {
%c0 = arith.constant 0 : index

%a_tdesc = xegpu.create_nd_tdesc %A : memref<1024x1024xf32> -> !xegpu.tensor_desc<1x32xf32, #l>
%b_tdesc = xegpu.create_nd_tdesc %B : memref<1024x1024xf32> -> !xegpu.tensor_desc<1x32xf32, #l>
%c_tdesc = xegpu.create_nd_tdesc %C : memref<1024x1024xf32> -> !xegpu.tensor_desc<1x32xf32, #l>

%a = xegpu.load_nd %a_tdesc[%c0, %c0] : !xegpu.tensor_desc<1x32xf32, #l> -> vector<1x32xf32>
%b = xegpu.load_nd %b_tdesc[%c0, %c0] : !xegpu.tensor_desc<1x32xf32, #l> -> vector<1x32xf32>

%result = arith.addf %a, %b {layout_result_0 = #l} : vector<1x32xf32>
xegpu.store_nd %result, %c_tdesc[%c0, %c0] : vector<1x32xf32>, !xegpu.tensor_desc<1x32xf32, #l>
gpu.return
}
}