Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -2408,6 +2408,7 @@ def Vector_CompressStoreOp :

def Vector_ShapeCastOp :
Vector_Op<"shape_cast", [Pure,
DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
DeclareOpInterfaceMethods<InferIntRangeInterface, ["inferResultRanges"]>
]>,
Arguments<(ins AnyVectorOfAnyRank:$source)>,
Expand Down
4 changes: 4 additions & 0 deletions mlir/lib/Dialect/Vector/IR/VectorOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6233,6 +6233,10 @@ void ShapeCastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
setResultRanges(getResult(), argRanges.front());
}

std::optional<SmallVector<int64_t, 4>> ShapeCastOp::getShapeForUnroll() {
return llvm::to_vector<4>(getResultVectorType().getShape());
}

LogicalResult ShapeCastOp::verify() {

VectorType sourceType = getSourceVectorType();
Expand Down
122 changes: 120 additions & 2 deletions mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,45 @@ static SmallVector<Value> sliceLoadStoreIndices(PatternRewriter &rewriter,
return indices;
}

/// Creates a result tile by extracting individual elements from the source
/// and inserting them at the correct positions in the tile.
static Value createTileFromElements(PatternRewriter &rewriter, Location loc,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'd move it just before your pattern definition

Value source, ArrayRef<int64_t> sourceShape,
ArrayRef<int64_t> resultShape,
ArrayRef<int64_t> tileOffsets,
ArrayRef<int64_t> tileShape,
VectorType tileType) {
// Initialize tile with zeros.
Value tile = arith::ConstantOp::create(rewriter, loc, tileType,
rewriter.getZeroAttr(tileType));

// Calculate strides for source, result, and tile shapes.
SmallVector<int64_t> sourceStrides = computeStrides(sourceShape);
SmallVector<int64_t> resultStrides = computeStrides(resultShape);
SmallVector<int64_t> tileStrides = computeStrides(tileShape);
int64_t numElementsInTile = computeProduct(tileShape);

// Iterate over all positions in the tile using linear indexing.
for (int64_t linearTileIdx = 0; linearTileIdx < numElementsInTile;
++linearTileIdx) {
// Convert linear tile index to multi-dimensional tile position.
SmallVector<int64_t> tilePosition = delinearize(linearTileIdx, tileStrides);

// Calculate the global position in the result.
SmallVector<int64_t> globalResultPos;
globalResultPos.reserve(tileOffsets.size());
for (auto [offset, pos] : llvm::zip_equal(tileOffsets, tilePosition)) {
globalResultPos.push_back(offset + pos);
}

int64_t linearIndex = linearize(globalResultPos, resultStrides);
SmallVector<int64_t> sourcePos = delinearize(linearIndex, sourceStrides);
Value element = vector::ExtractOp::create(rewriter, loc, source, sourcePos);
tile = vector::InsertOp::create(rewriter, loc, element, tile, tilePosition);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

could we use vector.to_elements and vector.from_elements instead of vectort.extract and vector.insert? That should simplify this loop and reduce code size significantly

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'd prefer to use insert/extract since its usage is consistent with other transformations in MLIR. Also, canonicalization should improve the IR and introduce from_elements (if thats what you meant by "reduce code size significantly")

}
return tile;
}

// Clones `op` into a new operations that takes `operands` and returns
// `resultTypes`.
static Operation *cloneOpWithOperandsAndTypes(OpBuilder &builder, Location loc,
Expand Down Expand Up @@ -1003,6 +1042,85 @@ struct UnrollFromElements : OpRewritePattern<vector::FromElementsOp> {
vector::UnrollVectorOptions options;
};

/// This pattern unrolls `vector.shape_cast` operations according to the
/// provided target unroll shape. It decomposes a large shape_cast operation
/// into smaller tiles and reconstructs each tile by extracting individual
/// elements from the source vector and placing them at the correct positions.
///
/// Since shape_cast performs linear element reindexing, the pattern uses
/// linear indexing as a bridge to map between source and result coordinates.
/// For each element in a result tile, it calculates the corresponding source
/// position and extracts that element.
///
/// Example:
/// Given a shape_cast operation:
/// %0 = vector.shape_cast %src : vector<2x8xf32> to vector<4x4xf32>
///
/// and a target unroll shape of <2x2>, the pattern produces:
///
/// %zero = arith.constant dense<0.0> : vector<4x4xf32>
/// %tile_zero = arith.constant dense<0.0> : vector<2x2xf32>
///
/// // First tile [0,0]: elements at result positions
/// (0,0),(0,1),(1,0),(1,1)
/// %e0 = vector.extract %src[0, 0] : f32 from vector<2x8xf32>
/// %t0 = vector.insert %e0, %tile_zero [0, 0] : f32 into vector<2x2xf32>
/// %e1 = vector.extract %src[0, 1] : f32 from vector<2x8xf32>
/// %t1 = vector.insert %e1, %t0 [0, 1] : f32 into vector<2x2xf32>
/// %e2 = vector.extract %src[0, 4] : f32 from vector<2x8xf32>
/// %t2 = vector.insert %e2, %t1 [1, 0] : f32 into vector<2x2xf32>
/// %e3 = vector.extract %src[0, 5] : f32 from vector<2x8xf32>
/// %t3 = vector.insert %e3, %t2 [1, 1] : f32 into vector<2x2xf32>
/// %r0 = vector.insert_strided_slice %t3, %zero
/// {offsets = [0, 0], strides = [1, 1]} : vector<2x2xf32> into
/// vector<4x4xf32>
///
struct UnrollShapeCastPattern : public OpRewritePattern<vector::ShapeCastOp> {
UnrollShapeCastPattern(MLIRContext *context,
const vector::UnrollVectorOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::ShapeCastOp>(context, benefit),
options(options) {}

LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
PatternRewriter &rewriter) const override {
auto targetShape = getTargetShape(options, shapeCastOp);
if (!targetShape)
return failure();

Location loc = shapeCastOp.getLoc();
VectorType sourceType = shapeCastOp.getSourceVectorType();
VectorType resultType = shapeCastOp.getResultVectorType();

ArrayRef<int64_t> resultShape = resultType.getShape();
ArrayRef<int64_t> sourceShape = sourceType.getShape();

SmallVector<int64_t> strides(targetShape->size(), 1);
Value result = arith::ConstantOp::create(rewriter, loc, resultType,
rewriter.getZeroAttr(resultType));

// For each unrolled tile in the result.
for (SmallVector<int64_t> tileOffsets :
StaticTileOffsetRange(resultShape, *targetShape)) {
// Create the target tile type.
auto tileType =
VectorType::get(*targetShape, resultType.getElementType());
// Build the tile by extracting individual elements.
Value tile = createTileFromElements(
rewriter, loc, shapeCastOp.getSource(), sourceShape, resultShape,
tileOffsets, *targetShape, tileType);
// Insert the tile into the result.
result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
loc, tile, result, tileOffsets, strides);
}
rewriter.replaceOp(shapeCastOp, result);
return success();
}

private:
vector::UnrollVectorOptions options;
};

} // namespace

void mlir::vector::populateVectorUnrollPatterns(
Expand All @@ -1013,8 +1131,8 @@ void mlir::vector::populateVectorUnrollPatterns(
UnrollReductionPattern, UnrollMultiReductionPattern,
UnrollTransposePattern, UnrollGatherPattern, UnrollLoadPattern,
UnrollStorePattern, UnrollBroadcastPattern, UnrollFromElements,
UnrollToElements, UnrollStepPattern>(patterns.getContext(),
options, benefit);
UnrollToElements, UnrollStepPattern, UnrollShapeCastPattern>(
patterns.getContext(), options, benefit);
}

void mlir::vector::populateVectorToElementsUnrollPatterns(
Expand Down
58 changes: 58 additions & 0 deletions mlir/test/Dialect/Vector/vector-unroll-options.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -496,3 +496,61 @@ func.func @elementwise_4D_to_2D(%v1: vector<2x2x2x2xf32>, %v2: vector<2x2x2x2xf3
// CHECK-COUNT-4: arith.addf %{{.*}}, %{{.*}} : vector<2x2xf32>
// CHECK-NOT: arith.addf
// CHECK: return

func.func @shape_cast_1D_to_2D(%v: vector<8xf32>) -> vector<4x2xf32> {
%0 = vector.shape_cast %v : vector<8xf32> to vector<4x2xf32>
return %0 : vector<4x2xf32>
}

// CHECK-LABEL: func @shape_cast_1D_to_2D
// CHECK-SAME: (%[[V:.*]]: vector<8xf32>) -> vector<4x2xf32>
// CHECK: %[[CST:.*]] = arith.constant dense<0.000000e+00> : vector<4x2xf32>
// CHECK: %[[CST_0:.*]] = arith.constant dense<0.000000e+00> : vector<2x2xf32>
// CHECK: %[[E0:.*]] = vector.extract %[[V]][0] : f32 from vector<8xf32>
// CHECK: %[[INS0:.*]] = vector.insert %[[E0]], %[[CST_0]] [0, 0] : f32 into vector<2x2xf32>
// CHECK: %[[E1:.*]] = vector.extract %[[V]][1] : f32 from vector<8xf32>
// CHECK: %[[INS1:.*]] = vector.insert %[[E1]], %[[INS0]] [0, 1] : f32 into vector<2x2xf32>
// CHECK: %[[E2:.*]] = vector.extract %[[V]][2] : f32 from vector<8xf32>
// CHECK: %[[INS2:.*]] = vector.insert %[[E2]], %[[INS1]] [1, 0] : f32 into vector<2x2xf32>
// CHECK: %[[E3:.*]] = vector.extract %[[V]][3] : f32 from vector<8xf32>
// CHECK: %[[V0:.*]] = vector.insert %[[E3]], %[[INS2]] [1, 1] : f32 into vector<2x2xf32>
// CHECK: %[[I0:.*]] = vector.insert_strided_slice %[[V0]], %[[CST]] {offsets = [0, 0], strides = [1, 1]} : vector<2x2xf32> into vector<4x2xf32>
// CHECK: %[[E4:.*]] = vector.extract %[[V]][4] : f32 from vector<8xf32>
// CHECK: %[[INS3:.*]] = vector.insert %[[E4]], %[[CST_0]] [0, 0] : f32 into vector<2x2xf32>
// CHECK: %[[E5:.*]] = vector.extract %[[V]][5] : f32 from vector<8xf32>
// CHECK: %[[INS4:.*]] = vector.insert %[[E5]], %[[INS3]] [0, 1] : f32 into vector<2x2xf32>
// CHECK: %[[E6:.*]] = vector.extract %[[V]][6] : f32 from vector<8xf32>
// CHECK: %[[INS5:.*]] = vector.insert %[[E6]], %[[INS4]] [1, 0] : f32 into vector<2x2xf32>
// CHECK: %[[E7:.*]] = vector.extract %[[V]][7] : f32 from vector<8xf32>
// CHECK: %[[V1:.*]] = vector.insert %[[E7]], %[[INS5]] [1, 1] : f32 into vector<2x2xf32>
// CHECK: %[[I1:.*]] = vector.insert_strided_slice %[[V1]], %[[I0]] {offsets = [2, 0], strides = [1, 1]} : vector<2x2xf32> into vector<4x2xf32>
// CHECK: return %[[I1]] : vector<4x2xf32>

func.func @shape_cast_2D(%v: vector<2x4xf32>) -> vector<4x2xf32> {
%0 = vector.shape_cast %v : vector<2x4xf32> to vector<4x2xf32>
return %0 : vector<4x2xf32>
}

// CHECK-LABEL: func @shape_cast_2D
// CHECK-SAME: (%[[V:.*]]: vector<2x4xf32>) -> vector<4x2xf32>
// CHECK: %[[CST:.*]] = arith.constant dense<0.000000e+00> : vector<4x2xf32>
// CHECK: %[[CST_0:.*]] = arith.constant dense<0.000000e+00> : vector<2x2xf32>
// CHECK: %[[E0:.*]] = vector.extract %[[V]][0, 0] : f32 from vector<2x4xf32>
// CHECK: %[[INS0:.*]] = vector.insert %[[E0]], %[[CST_0]] [0, 0] : f32 into vector<2x2xf32>
// CHECK: %[[E1:.*]] = vector.extract %[[V]][0, 1] : f32 from vector<2x4xf32>
// CHECK: %[[INS1:.*]] = vector.insert %[[E1]], %[[INS0]] [0, 1] : f32 into vector<2x2xf32>
// CHECK: %[[E2:.*]] = vector.extract %[[V]][0, 2] : f32 from vector<2x4xf32>
// CHECK: %[[INS2:.*]] = vector.insert %[[E2]], %[[INS1]] [1, 0] : f32 into vector<2x2xf32>
// CHECK: %[[E3:.*]] = vector.extract %[[V]][0, 3] : f32 from vector<2x4xf32>
// CHECK: %[[V0:.*]] = vector.insert %[[E3]], %[[INS2]] [1, 1] : f32 into vector<2x2xf32>
// CHECK: %[[I0:.*]] = vector.insert_strided_slice %[[V0]], %[[CST]] {offsets = [0, 0], strides = [1, 1]} : vector<2x2xf32> into vector<4x2xf32>
// CHECK: %[[E4:.*]] = vector.extract %[[V]][1, 0] : f32 from vector<2x4xf32>
// CHECK: %[[INS3:.*]] = vector.insert %[[E4]], %[[CST_0]] [0, 0] : f32 into vector<2x2xf32>
// CHECK: %[[E5:.*]] = vector.extract %[[V]][1, 1] : f32 from vector<2x4xf32>
// CHECK: %[[INS4:.*]] = vector.insert %[[E5]], %[[INS3]] [0, 1] : f32 into vector<2x2xf32>
// CHECK: %[[E6:.*]] = vector.extract %[[V]][1, 2] : f32 from vector<2x4xf32>
// CHECK: %[[INS5:.*]] = vector.insert %[[E6]], %[[INS4]] [1, 0] : f32 into vector<2x2xf32>
// CHECK: %[[E7:.*]] = vector.extract %[[V]][1, 3] : f32 from vector<2x4xf32>
// CHECK: %[[V1:.*]] = vector.insert %[[E7]], %[[INS5]] [1, 1] : f32 into vector<2x2xf32>
// CHECK: %[[I1:.*]] = vector.insert_strided_slice %[[V1]], %[[I0]] {offsets = [2, 0], strides = [1, 1]} : vector<2x2xf32> into vector<4x2xf32>
// CHECK: return %[[I1]] : vector<4x2xf32>
4 changes: 2 additions & 2 deletions mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -163,8 +163,8 @@ struct TestVectorUnrollingPatterns
.setFilterConstraint([](Operation *op) {
return success(
isa<arith::AddFOp, vector::FMAOp, vector::MultiDimReductionOp,
vector::BroadcastOp, vector::LoadOp, vector::StoreOp>(
op));
vector::BroadcastOp, vector::LoadOp, vector::StoreOp,
vector::ShapeCastOp>(op));
}));
populateVectorUnrollPatterns(
patterns, UnrollVectorOptions()
Expand Down