-
Notifications
You must be signed in to change notification settings - Fork 15.3k
[mlir][tosa] Introduce arith.constant -> tosa.const normalization pass #167873
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
117 changes: 117 additions & 0 deletions
117
mlir/lib/Dialect/Tosa/Transforms/TosaArithConstantToConst.cpp
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,117 @@ | ||
| //===- TosaArithConstantToConst.cpp ---------------------------------------===// | ||
| // | ||
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| // See https://llvm.org/LICENSE.txt for license information. | ||
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| // | ||
| //===----------------------------------------------------------------------===// | ||
| // | ||
| // This file implements a pass that converts tensor-valued arith.constant ops | ||
| // into tosa.const so that TOSA pipelines operate on a uniform constant form. | ||
| // | ||
| //===----------------------------------------------------------------------===// | ||
|
|
||
| #include "mlir/Dialect/Tosa/Transforms/Passes.h" | ||
|
|
||
| #include "mlir/Dialect/Arith/IR/Arith.h" | ||
| #include "mlir/Dialect/Func/IR/FuncOps.h" | ||
| #include "mlir/Dialect/Quant/IR/QuantTypes.h" | ||
| #include "mlir/Dialect/Tosa/IR/TosaOps.h" | ||
| #include "mlir/IR/BuiltinAttributes.h" | ||
| #include "mlir/IR/BuiltinTypes.h" | ||
| #include "mlir/IR/PatternMatch.h" | ||
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" | ||
|
|
||
| namespace mlir { | ||
| namespace tosa { | ||
| #define GEN_PASS_DEF_TOSAARITHCONSTANTTOTOSACONSTPASS | ||
| #include "mlir/Dialect/Tosa/Transforms/Passes.h.inc" | ||
| } // namespace tosa | ||
| } // namespace mlir | ||
|
|
||
| using namespace mlir; | ||
| using namespace mlir::tosa; | ||
|
|
||
| namespace { | ||
|
|
||
| /// Returns true when `elementType` is natively representable by tosa.const. | ||
| static bool isSupportedElementType(Type elementType) { | ||
| if (isa<FloatType>(elementType)) | ||
| return true; | ||
|
|
||
| if (auto intType = dyn_cast<IntegerType>(elementType)) | ||
| return intType.isSignless() || intType.isUnsigned(); | ||
|
|
||
| if (isa<quant::QuantizedType>(elementType)) | ||
| return true; | ||
|
|
||
| return false; | ||
| } | ||
|
|
||
| class ArithConstantToTosaConst : public OpRewritePattern<arith::ConstantOp> { | ||
| public: | ||
| using OpRewritePattern::OpRewritePattern; | ||
|
|
||
| LogicalResult matchAndRewrite(arith::ConstantOp constOp, | ||
| PatternRewriter &rewriter) const override { | ||
| // TOSA constant verification requires a ranked, statically shaped tensor. | ||
| auto resultType = dyn_cast<RankedTensorType>(constOp.getResult().getType()); | ||
| if (!resultType || !resultType.hasStaticShape()) | ||
| return failure(); | ||
|
|
||
| if (!isSupportedElementType(resultType.getElementType())) | ||
| return failure(); | ||
|
|
||
| Attribute attr = constOp.getValueAttr(); | ||
| auto elementsAttr = dyn_cast<ElementsAttr>(attr); | ||
| if (!elementsAttr) | ||
| return failure(); | ||
|
|
||
| auto attrType = dyn_cast<RankedTensorType>(elementsAttr.getType()); | ||
| if (!attrType || !attrType.hasStaticShape()) | ||
| return failure(); | ||
|
|
||
| if (attrType != resultType) { | ||
| // Allow reshape when the payload can be reinterpreted without altering | ||
| // the number of elements or element type. Dense resource attributes | ||
| // cannot be reshaped losslessly, so bail out in that case. | ||
| if (!isa<DenseElementsAttr>(elementsAttr)) | ||
| return failure(); | ||
|
|
||
| if (attrType.getElementType() != resultType.getElementType()) | ||
| return failure(); | ||
|
|
||
| auto denseAttr = cast<DenseElementsAttr>(elementsAttr); | ||
| if (denseAttr.getNumElements() != resultType.getNumElements()) | ||
| return failure(); | ||
|
|
||
| elementsAttr = denseAttr.reshape(resultType); | ||
| } | ||
|
|
||
| auto newConst = tosa::ConstOp::create(rewriter, constOp.getLoc(), | ||
| resultType, elementsAttr); | ||
| rewriter.replaceOp(constOp, newConst.getResult()); | ||
| return success(); | ||
| } | ||
| }; | ||
|
|
||
| struct TosaArithConstantToTosaConstPass | ||
| : public tosa::impl::TosaArithConstantToTosaConstPassBase< | ||
| TosaArithConstantToTosaConstPass> { | ||
| using Base::Base; | ||
|
|
||
| void getDependentDialects(DialectRegistry ®istry) const override { | ||
| registry.insert<tosa::TosaDialect>(); | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Should arith also be added here? |
||
| } | ||
|
|
||
| void runOnOperation() override { | ||
| auto *ctx = &getContext(); | ||
| RewritePatternSet patterns(ctx); | ||
| patterns.add<ArithConstantToTosaConst>(ctx); | ||
|
|
||
| if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) | ||
| signalPassFailure(); | ||
| } | ||
| }; | ||
|
|
||
| } // namespace | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,84 @@ | ||
| // RUN: mlir-opt %s --tosa-arith-const-to-tosa-const --split-input-file | FileCheck %s | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit: weak preference for this file to be renames to: |
||
|
|
||
| // CHECK-LABEL: func.func @rewrite_f32_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf32>}> : () -> tensor<2xf32> | ||
| // CHECK: return %[[CST]] | ||
| func.func @rewrite_f32_tensor() -> tensor<2xf32> { | ||
| %c = arith.constant dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf32> | ||
| return %c : tensor<2xf32> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_i32_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[1, 0, -1]> : tensor<3xi32>}> : () -> tensor<3xi32> | ||
| // CHECK: return %[[CST]] | ||
| func.func @rewrite_i32_tensor() -> tensor<3xi32> { | ||
| %c = arith.constant dense<[1, 0, -1]> : tensor<3xi32> | ||
| return %c : tensor<3xi32> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_i1_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[true, false]> : tensor<2xi1>}> : () -> tensor<2xi1> | ||
| func.func @rewrite_i1_tensor() -> tensor<2xi1> { | ||
| %c = arith.constant dense<[true, false]> : tensor<2xi1> | ||
| return %c : tensor<2xi1> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_rank0_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<1.234500e+00> : tensor<f32>}> : () -> tensor<f32> | ||
| func.func @rewrite_rank0_tensor() -> tensor<f32> { | ||
| %c = arith.constant dense<1.234500e+00> : tensor<f32> | ||
| return %c : tensor<f32> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @preserve_scalar_i32 | ||
| // CHECK: %[[CST:.*]] = arith.constant 42 : i32 | ||
| func.func @preserve_scalar_i32() -> i32 { | ||
| %c = arith.constant 42 : i32 | ||
| return %c : i32 | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @preserve_index_tensor | ||
| // CHECK: %[[CST:.*]] = arith.constant dense<[0, 1]> : tensor<2xindex> | ||
| func.func @preserve_index_tensor() -> tensor<2xindex> { | ||
| %c = arith.constant dense<[0, 1]> : tensor<2xindex> | ||
| return %c : tensor<2xindex> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_resource_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense_resource<blob1> : tensor<4xf32>}> : () -> tensor<4xf32> | ||
| func.func @rewrite_resource_tensor() -> tensor<4xf32> { | ||
| %c = arith.constant dense_resource<"blob1"> : tensor<4xf32> | ||
| return %c : tensor<4xf32> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_quant_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[10, 20]> : tensor<2xui8>}> : () -> tensor<2xui8> | ||
| func.func @rewrite_quant_tensor() -> tensor<2xui8> { | ||
| %c = arith.constant dense<[10, 20]> : tensor<2xui8> | ||
| return %c : tensor<2xui8> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_quant_uniform_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<["10", "20"]> : tensor<2x!quant.uniform<i8:f32, 5.000000e-01>>}> : () -> tensor<2x!quant.uniform<i8:f32, 5.000000e-01>> | ||
| func.func @rewrite_quant_uniform_tensor() -> tensor<2x!quant.uniform<i8:f32, 0.5:0>> { | ||
| %c = arith.constant dense<["10", "20"]> : tensor<2x!quant.uniform<i8:f32, 0.5:0>> | ||
| return %c : tensor<2x!quant.uniform<i8:f32, 0.5:0>> | ||
| } | ||
|
|
||
| // ----- | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is there a test for this functionality?