Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 15 additions & 9 deletions modules/impact/impact_pack.py
Original file line number Diff line number Diff line change
Expand Up @@ -782,6 +782,7 @@ def INPUT_TYPES(s):
"scheduler_func_opt": ("SCHEDULER_FUNC",),
"tiled_encode": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"tiled_decode": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"mask": ("MASK", {"tooltip": "Optional mask to limit face detection to specific areas. Only areas not masked (white areas) will be processed."}),
}}

RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK", "DETAILER_PIPE", "IMAGE")
Expand All @@ -801,13 +802,17 @@ def enhance_face(image, model, clip, vae, guide_size, guide_size_for_bbox, max_s
sam_mask_hint_use_negative, drop_size,
bbox_detector, segm_detector=None, sam_model_opt=None, wildcard_opt=None, detailer_hook=None,
refiner_ratio=None, refiner_model=None, refiner_clip=None, refiner_positive=None, refiner_negative=None, cycle=1,
inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None, tiled_encode=False, tiled_decode=False):
inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None, tiled_encode=False, tiled_decode=False, mask=None):

# make default prompt as 'face' if empty prompt for CLIPSeg
bbox_detector.setAux('face')
segs = bbox_detector.detect(image, bbox_threshold, bbox_dilation, bbox_crop_factor, drop_size, detailer_hook=detailer_hook)
bbox_detector.setAux(None)

# Apply mask filter if provided
if mask is not None:
segs = core.segs_bitwise_and_mask(segs, mask)

# bbox + sam combination
if sam_model_opt is not None:
sam_mask = core.make_sam_mask(sam_model_opt, segs, image, sam_detection_hint, sam_dilation,
Expand Down Expand Up @@ -861,7 +866,7 @@ def doit(self, image, model, clip, vae, guide_size, guide_size_for, max_size, se
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size, bbox_detector, wildcard, cycle=1,
sam_model_opt=None, segm_detector_opt=None, detailer_hook=None, inpaint_model=False, noise_mask_feather=0,
scheduler_func_opt=None, tiled_encode=False, tiled_decode=False):
scheduler_func_opt=None, tiled_encode=False, tiled_decode=False, mask=None):

result_img = None
result_mask = None
Expand All @@ -873,17 +878,17 @@ def doit(self, image, model, clip, vae, guide_size, guide_size_for, max_size, se
logging.warning("[Impact Pack] WARN: FaceDetailer is not a node designed for video detailing. If you intend to perform video detailing, please use Detailer For AnimateDiff.")

for i, single_image in enumerate(image):
enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list = FaceDetailer.enhance_face(
enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask_result, cnet_pil_list = FaceDetailer.enhance_face(
single_image.unsqueeze(0), model, clip, vae, guide_size, guide_size_for, max_size, seed + i, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size, bbox_detector, segm_detector_opt, sam_model_opt, wildcard, detailer_hook,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt,
tiled_encode=tiled_encode, tiled_decode=tiled_decode)
tiled_encode=tiled_encode, tiled_decode=tiled_decode, mask=mask)

result_img = torch.cat((result_img, enhanced_img), dim=0) if result_img is not None else enhanced_img
result_mask = torch.cat((result_mask, mask), dim=0) if result_mask is not None else mask
result_mask = torch.cat((result_mask, mask_result), dim=0) if result_mask is not None else mask_result
result_cropped_enhanced.extend(cropped_enhanced)
result_cropped_enhanced_alpha.extend(cropped_enhanced_alpha)
result_cnet_images.extend(cnet_pil_list)
Expand Down Expand Up @@ -1674,6 +1679,7 @@ def INPUT_TYPES(s):
"scheduler_func_opt": ("SCHEDULER_FUNC",),
"tiled_encode": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"tiled_decode": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
"mask": ("MASK", {"tooltip": "Optional mask to limit face detection to specific areas. Only areas not masked (white areas) will be processed."}),
}
}

Expand All @@ -1691,7 +1697,7 @@ def doit(self, image, detailer_pipe, guide_size, guide_size_for, max_size, seed,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion,
sam_mask_hint_threshold, sam_mask_hint_use_negative, drop_size, refiner_ratio=None,
cycle=1, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None,
tiled_encode=False, tiled_decode=False):
tiled_encode=False, tiled_decode=False, mask=None):

result_img = None
result_mask = None
Expand All @@ -1706,7 +1712,7 @@ def doit(self, image, detailer_pipe, guide_size, guide_size_for, max_size, seed,
refiner_model, refiner_clip, refiner_positive, refiner_negative = detailer_pipe

for i, single_image in enumerate(image):
enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list = FaceDetailer.enhance_face(
enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask_result, cnet_pil_list = FaceDetailer.enhance_face(
single_image.unsqueeze(0), model, clip, vae, guide_size, guide_size_for, max_size, seed + i, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
Expand All @@ -1715,10 +1721,10 @@ def doit(self, image, detailer_pipe, guide_size, guide_size_for, max_size, seed,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive, refiner_negative=refiner_negative,
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt,
tiled_encode=tiled_encode, tiled_decode=tiled_decode)
tiled_encode=tiled_encode, tiled_decode=tiled_decode, mask=mask)

result_img = torch.cat((result_img, enhanced_img), dim=0) if result_img is not None else enhanced_img
result_mask = torch.cat((result_mask, mask), dim=0) if result_mask is not None else mask
result_mask = torch.cat((result_mask, mask_result), dim=0) if result_mask is not None else mask_result
result_cropped_enhanced.extend(cropped_enhanced)
result_cropped_enhanced_alpha.extend(cropped_enhanced_alpha)
result_cnet_images.extend(cnet_pil_list)
Expand Down