Skip to content

m-a-n-i-f-e-s-t/power-attention

Repository files navigation

Power Attention

Build

This repository contains a PyTorch layer implementing symmetric power attention, a linear-cost variant of attention whose state size can be controlled independently of context length and parameter count.

For details on the approach, see our paper: Scaling Context Requires Rethinking Attention

Documentation: https://m-a-n-i-f-e-s-t.github.io/power-attention/

Features

  • Efficient chunked algorithm for linear scaling with sequence length (O(t) cost vs O(t²) for standard attention)
  • Support for gated attention and rotary embeddings
  • CUDA kernels optimized for A100
  • FP16 and BF16 support

Installation

From PyPI (Recommended)

pip install power-attention

From Source

Requirements:

  • Python 3.11 or 3.12 (3.13 depends on the upcoming Triton 3.2 release)
  • CUDA Toolkit 12.4
  • GCC/G++ with C++17 support
  • Linux (Windows/MacOS not supported)
git clone https://github.com/manifest-ai/power-attention.git
cd power-attention
pip install -e .

All other dependencies (PyTorch, Ninja build system, etc.) will be automatically installed through pip.

Usage

The main entry point is the power_full function, which implements symmetric power attention. Here's a basic example:

import torch
from power_attention import power_full

# Create input tensors
batch_size = 2
seq_len = 1024
num_heads = 8
head_dim = 64

Q = torch.randn(batch_size, seq_len, num_heads, head_dim, device='cuda', dtype=torch.float16)
K = torch.randn_like(Q)
V = torch.randn_like(Q)

# Optional gating tensor
log_G = torch.nn.functional.logsigmoid(
    torch.randn(batch_size, seq_len, num_heads, dtype=torch.float32, device='cuda')
)

# Compute attention
output = power_full(
    Q=Q, K=K, V=V, 
    log_G=log_G,          # Optional gating tensor
    deg=2,                # Power parameter p
    chunk_size=128,       # Size of chunks for processing long sequences
)

Integration with Transformer Models

The package includes a drop-in replacement for standard attention in transformer models. See train/model.py for a complete example of using power attention in a GPT-style model:

from power_attention import power_full

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        # ... initialization code ...
        
    def forward(self, x):
        # ... projection code ...
        
        # Use power attention instead of standard attention
        y = power_full(
            Q=q, K=k, V=v, 
            log_G=log_g,
            deg=self.degree,
            chunk_size=self.chunk_size
        )
        
        # ... output projection ...
        return y

Development

Setup

The package uses pip's editable install mode for development. First, activate your Python virtual environment, then:

# Install base package in editable mode
pip install -e .

# Install development dependencies
pip install psutil
pip install flash_attn==2.7.3 --no-build-isolation
pip install -e .[dev]

Testing & Benchmarking

Run correctness tests:

pytest

Run benchmarks:

python -m perf.benchmark fwd          // Forward pass
python -m perf.benchmark bwd          // Backward pass
python -m perf.benchmark fwd+bwd      // Forward + backward pass

See benchmark for details.

Documentation

To view the documentation locally, run:

pip install mkdocs mkdocs-material
.venv/bin/mkdocs serve -a 0.0.0.0:8000

To update it publicly, run:

mkdocs gh-deploy

Training Example

To immediately see the kernel in action, cd train and use:

# Create the dataset first
python prepare_owt.py

# Single GPU training
python train.py \
  --batch_size=32 \
  --attention_kernel=power \
  --degree=2 \
  --chunk_size=128 \
  --disable_gating=False

# Multi-GPU training with DDP (example with 4 GPUs)
torchrun --standalone --nproc_per_node=4 train.py \
  --batch_size=32 \
  --attention_kernel=power \
  --degree=2 \
  --chunk_size=128 \
  --disable_gating=False

For distributed training across multiple nodes:

# On the first (master) node with IP 123.456.123.456:
torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=123.456.123.456 --master_port=1234 train.py

# On the worker node:
torchrun --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=123.456.123.456 --master_port=1234 train.py

Note: If your cluster does not have Infiniband interconnect, prepend NCCL_IB_DISABLE=1 to the commands.

Contributing

We welcome contributions! Here's how you can help:

Getting Started

  1. Fork the repository
  2. Create a new branch for your feature/fix: git checkout -b feature-name
  3. Install development dependencies: pip install -e .[dev]

Guidelines

  • Code Style: Follow PEP 8 for Python code. For CUDA code, follow the existing style in the codebase
  • Documentation: Add docstrings to new functions and update README if needed
  • Testing: Add tests for new features and ensure all tests pass
  • Benchmarking: If your code changes affect performance, delete the plots/benchmark_results and rerun some benchmarks with python -m perf.benchmark fwd+bwd
  • Commits: Write clear, concise commit messages
  • Performance: For CUDA kernels, include benchmarks showing performance impact

Pull Request Process

  1. Update documentation for any new features
  2. Add or update tests as needed
  3. Ensure all tests pass: pytest
  4. Run benchmarks if performance-critical code was changed: python3 -m perf.benchmark fwd+bwd
  5. Create a Pull Request with a clear description of changes
  6. Wait for review and address any feedback

Areas for Contribution

  • Performance optimizations for different GPU architectures
  • Documentation improvements
  • Bug fixes
  • Test coverage improvements

For major changes, please open an issue first to discuss what you would like to change.

Release Process

  1. Update the version in pyproject.toml
  2. Run pytest and benchmarks if applicable
  3. Run make release-test to build & push to Test PyPI for all Python targets
  4. Run make release to build & push to PyPI for all Python targets

Citation

If you use this code in your research, please cite:

@article{buckman2024symmetric,
  title={Symmetric Power Transformers},
  author={Buckman, Jacob and Gelada, Carles and Zhang, Sean},
  publisher={Manifest AI},
  year={2024},
  month={8},
  url={https://manifestai.com/articles/symmetric-power-transformers/}
}

License

Apache 2.0 (see LICENSE)

About

Attention Kernels for Symmetric Power Transformers

Topics

Resources

License

Stars

Watchers

Forks

Contributors 4

  •  
  •  
  •  
  •