Skip to content

mathurshrenya/Personalized-Shopper-An-E-commerce-Recommendation-System

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Personalized Shopper: E-commerce Recommendation System

A scalable e-commerce recommendation system built with Apache Spark, Delta Lake, and Neural Collaborative Filtering (NCF) for processing 10M+ user interactions.

Features

  • Scalable data processing with Apache Spark
  • ACID transactions and time travel with Delta Lake
  • Neural Collaborative Filtering for personalized recommendations
  • Real-time and batch processing capabilities
  • Model training and serving pipeline
  • Monitoring and evaluation metrics

Project Structure

├── data/                  # Data storage directory
├── notebooks/            # Jupyter notebooks for analysis
├── src/
│   ├── data/            # Data processing modules
│   ├── models/          # NCF model implementation
│   ├── training/        # Model training pipeline
│   └── serving/         # Model serving and inference
├── tests/               # Unit tests
├── config/              # Configuration files
└── requirements.txt     # Python dependencies

Prerequisites

  • Python 3.8+
  • Apache Spark 3.2+
  • Delta Lake 2.0+
  • PyTorch 1.9+
  • Jupyter Notebook

Setup

  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Start Jupyter Notebook:
jupyter notebook

Usage

  1. Data Processing:
python src/data/process_data.py
  1. Model Training:
python src/training/train_model.py
  1. Generate Recommendations:
python src/serving/generate_recommendations.py

License

MIT License

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages