Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion src/optimization/gauss_newton.jl
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,12 @@ function opt_gauss_newton!(
break
end

d = solve_linlsqr!(Jac, res, linlsqr, droptol)
if (linlsqr isa LinLsqrSolve) # Refactored behaviour
d = solve_linlsqr!(Jac, res, linlsqr)
else # Old behavior
d = solve_linlsqr!(Jac, res, linlsqr, droptol)
end

x = get_coeffs(graph, cref)
x -= γ0 * d
set_coeffs!(graph, x, cref)
Expand Down
62 changes: 62 additions & 0 deletions src/optimization/opt_common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,68 @@ function adjust_for_errtype!(A, b, objfun_vals, errtype)
return (A, b)
end


abstract type LinLsqrSolve end
struct BackslashLinLsqrSolve <: LinLsqrSolve;
end
function solve_linlsqr!(A,b,::BackslashLinLsqrSolve)
d = A \ b
end

struct RealBackslashLinLsqrSolve <: LinLsqrSolve; end
function solve_linlsqr!(A,b,::RealBackslashLinLsqrSolve)
d = vcat(real(A), imag(A)) \ vcat(real(b), imag(b))
end

struct NormEqLinLsqrSolve <: LinLsqrSolve; end
function solve_linsqr!(A,b,::NormEqLinLsqrSolve)
d = (A' * A) \ (A' * b)
end

struct RealNormEqLinLsqrSolve <: LinLsqrSolve; end
function solve_linlsqr!(A,b,::RealNormEqLinLsqrSolve)
Ar = real(A)
Ai = imag(A)
br = real(b)
bi = imag(b)
d = (Ar' * Ar + Ai' * Ai) \ (Ar' * br + Ai' * bi)
end

struct SVDLsqrSolve <: LinLsqrSolve;
tp
droptol
fixed_rank
end
function solve_linlsqr!(A,b,solver::SVDLsqrSolve)

if (solver.tp == :real_svd)
A = vcat(real(A), imag(A))
b = vcat(real(b), imag(b))
end
if (eltype(A) == BigFloat || eltype(A) == Complex{BigFloat})
Sfact = svd!(A; full = false, alg = nothing)
else
Sfact = svd(A)
end
d = Sfact.S
# Use pseudoinverse if droptol>0
Z = (d / d[1]) .< solver.droptol;
II=findall((!).(Z));
nonzero=II[1:Int(min(solver.fixed_rank,length(II)))];

# Only select index nonzero
dinv=zeros(eltype(d),size(d));
dinv[1:length(nonzero)] = 1 ./ d[1:length(nonzero)];

# No explicit construction, only multiplication
# JJ0=Sfact.U*Diagonal(d)*Sfact.Vt
d = Sfact.V * (dinv .* (Sfact.U' * b))


end



"""
d = solve_linlsqr!(A, b, linlsqr, droptol)

Expand Down
Loading