Refer to Report.pdf for the detailed explaination and analysis of the system.
├── classification/ # Classification files
│ ├── dataset.py # Dataset handling for classification tasks
│ ├── nets.py # Model definitions and architectures for pedestrian attribute classification
│ ├── preprocess.py # Data preprocessing pipeline
│ ├── train_strategy1.py # Training script for strategy 1
│ ├── train_strategy2.py # Training script for strategy 2
│ └── test.py # Testing and evaluation script
│
├── confs/ # Configuration files
│ ├── botsort.yaml # Tracker configuration for BoT-SORT
│ └── config.txt # Configuration files for camera and lines
│
├── dataset/ # Dataset-related files
│
├── models/ # Models directory
│ ├── yolo11m.pt # Pre-trained YOLO model for pedestrian detection
│ ├── classification_model_strategy1.pth # Trained model for classification with strategy 1
│ └── classification_model_strategy2.pth # Trained model for classification with strategy 2
│
├── result/ # Result files
│ └── result.txt # Result file to store analyzed results
│
├── videos/ # Video files for testing and analysis
│
├── gui_utils.py # GUI utilities for rendering bounding boxes, text, and other visual elements
├── lines_utils.py # Utilities for managing and checking line crossings
├── main.py # Main script for running the pedestrian analysis system
├── OutputWriter.py # Manages saving results and generating reports
├── tracking.py # Tracking-related functions using BoT-SORT
└── README.md # Project documentation
-
Full datasets are avaiable at: Training images https://drive.google.com/file/d/1uEcO7zgZilzDhbr1wdGkoG6LxH_uJ8ay/view?usp=share_link Validation images https://drive.google.com/file/d/1HXJdXgnjYb2AcHO841McnUlw4roJthK-/view?usp=share_link
-
Trained models are not avaiable