-
Notifications
You must be signed in to change notification settings - Fork 11
FID code from Dihan #306
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
edyoshikun
wants to merge
10
commits into
main
Choose a base branch
from
fid_ed
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
FID code from Dihan #306
Changes from all commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
f53f48b
updated the first version of the FID code
d33f809
update
14df418
update torchscript model
0f01354
update fid script
593c6df
moving files to benchmar/Dynacell
edyoshikun 90c77b2
rename shell script to run ts
edyoshikun 65ea06f
convert numpy docs, using click, torch_inference mode and simplifiyin…
edyoshikun 31b429c
store embeddings
edyoshikun efbb188
deleting uncessary files. keeping only the torch script related scripts
edyoshikun 0098771
fid on position .
edyoshikun File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -47,3 +47,5 @@ slurm*.out | |
|
||
#lightning_logs directory | ||
lightning_logs/ | ||
|
||
applications/dynacell/test | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,353 @@ | ||
import warnings | ||
from pathlib import Path | ||
|
||
import click | ||
import numpy as np | ||
import torch | ||
import xarray as xr | ||
from iohub.ngff import Position, open_ome_zarr | ||
from torch import Tensor | ||
from tqdm import tqdm | ||
|
||
def normalise(volume: torch.Tensor) -> torch.Tensor: | ||
"""Normalize volume to [-1, 1] range using min-max normalization. | ||
|
||
Parameters | ||
---------- | ||
volume : torch.Tensor | ||
Input volume with shape (D, H, W) or (B, D, H, W) | ||
|
||
Returns | ||
------- | ||
torch.Tensor | ||
Normalized volume in [-1, 1] range with same shape as input | ||
""" | ||
v_min = volume.amin(dim=(-3, -2, -1), keepdim=True) | ||
v_max = volume.amax(dim=(-3, -2, -1), keepdim=True) | ||
volume = (volume - v_min) / (v_max - v_min + 1e-6) # → [0,1] | ||
return volume * 2.0 - 1.0 # → [-1,1] | ||
|
||
@torch.jit.script_if_tracing | ||
def sqrtm(sigma: Tensor) -> Tensor: | ||
r"""Compute the square root of a positive semi-definite matrix. | ||
|
||
Uses eigendecomposition: :math:`\sqrt{\Sigma} = Q \sqrt{\Lambda} Q^T` | ||
where :math:`Q \Lambda Q^T` is the eigendecomposition of :math:`\Sigma`. | ||
|
||
Parameters | ||
---------- | ||
sigma : Tensor | ||
A positive semi-definite matrix with shape (*, D, D) | ||
|
||
Returns | ||
------- | ||
Tensor | ||
Square root of the input matrix with same shape | ||
|
||
Examples | ||
-------- | ||
>>> V = torch.randn(4, 4, dtype=torch.double) | ||
>>> A = V @ V.T | ||
>>> B = sqrtm(A @ A) | ||
>>> torch.allclose(A, B) | ||
True | ||
""" | ||
|
||
L, Q = torch.linalg.eigh(sigma) | ||
L = L.relu().sqrt() | ||
|
||
return Q @ (L[..., None] * Q.mT) | ||
|
||
@torch.jit.script_if_tracing | ||
def frechet_distance( | ||
mu_x: Tensor, | ||
sigma_x: Tensor, | ||
mu_y: Tensor, | ||
sigma_y: Tensor, | ||
) -> Tensor: | ||
r"""Compute the Fréchet distance between two multivariate Gaussian distributions. | ||
|
||
The Fréchet distance is given by: | ||
.. math:: d^2 = \left\| \mu_x - \mu_y \right\|_2^2 + | ||
\operatorname{tr} \left( \Sigma_x + \Sigma_y - 2 \sqrt{\Sigma_y^{\frac{1}{2}} \Sigma_x \Sigma_y^{\frac{1}{2}}} \right) | ||
|
||
Parameters | ||
---------- | ||
mu_x : Tensor | ||
Mean of the first distribution with shape (*, D) | ||
sigma_x : Tensor | ||
Covariance of the first distribution with shape (*, D, D) | ||
mu_y : Tensor | ||
Mean of the second distribution with shape (*, D) | ||
sigma_y : Tensor | ||
Covariance of the second distribution with shape (*, D, D) | ||
|
||
Returns | ||
------- | ||
Tensor | ||
Fréchet distance between the two distributions | ||
|
||
References | ||
---------- | ||
.. [1] https://wikipedia.org/wiki/Frechet_distance | ||
|
||
Examples | ||
-------- | ||
>>> mu_x = torch.arange(3).float() | ||
>>> sigma_x = torch.eye(3) | ||
>>> mu_y = 2 * mu_x + 1 | ||
>>> sigma_y = 2 * sigma_x + 1 | ||
>>> frechet_distance(mu_x, sigma_x, mu_y, sigma_y) | ||
tensor(15.8710) | ||
""" | ||
|
||
sigma_y_12 = sqrtm(sigma_y) | ||
|
||
a = (mu_x - mu_y).square().sum(dim=-1) | ||
b = sigma_x.trace() + sigma_y.trace() | ||
c = sqrtm(sigma_y_12 @ sigma_x @ sigma_y_12).trace() | ||
|
||
return a + b - 2 * c | ||
|
||
@torch.no_grad() | ||
def fid_from_features(f1, f2, eps=1e-6): | ||
"""Compute Fréchet Inception Distance (FID) from feature embeddings. | ||
|
||
Parameters | ||
---------- | ||
f1 : torch.Tensor | ||
Features from first dataset with shape (N1, D) | ||
f2 : torch.Tensor | ||
Features from second dataset with shape (N2, D) | ||
eps : float, default=1e-6 | ||
Small value added to diagonal for numerical stability | ||
|
||
Returns | ||
------- | ||
float | ||
FID score between the two feature sets | ||
""" | ||
mu1, sigma1 = f1.mean(0), torch.cov(f1.T) | ||
mu2, sigma2 = f2.mean(0), torch.cov(f2.T) | ||
|
||
eye = torch.eye(sigma1.size(0), device=sigma1.device, dtype=sigma1.dtype) | ||
sigma1 = sigma1 + eps * eye | ||
sigma2 = sigma2 + eps * eye | ||
|
||
return frechet_distance(mu1, sigma1, mu2, sigma2).clamp_min_(0).item() | ||
|
||
|
||
@torch.inference_mode() | ||
def embed_position( | ||
position: Position, | ||
vae: torch.nn.Module, | ||
channel_name: str, | ||
device: str = "cuda", | ||
batch_size: int = 4, | ||
input_spatial_size: tuple = (32, 512, 512), | ||
): | ||
"""Encode position data using a variational autoencoder with metadata. | ||
|
||
Parameters | ||
---------- | ||
position : Position | ||
Single position object from zarr plate | ||
vae : torch.nn.Module | ||
Pre-trained VAE model for encoding | ||
channel_name : str | ||
Name of the channel to extract from the position | ||
device : str, default="cuda" | ||
Device to run computations on | ||
batch_size : int, default=4 | ||
Number of frames to process simultaneously | ||
input_spatial_size : tuple, default=(32, 512, 512) | ||
Target spatial dimensions for VAE input (D, H, W) | ||
|
||
Returns | ||
------- | ||
xr.Dataset | ||
Dataset with embeddings and metadata | ||
""" | ||
position_name = position.zgroup.name | ||
embeddings_list = [] | ||
timepoints_list = [] | ||
|
||
v = torch.as_tensor( | ||
position.data[:, position.get_channel_index(channel_name)], | ||
dtype=torch.float32, device=device, | ||
) # (T, D, H, W) | ||
|
||
v = normalise(v) # still (T, D, H, W) | ||
|
||
timepoint = 0 | ||
for t0 in tqdm(range(0, v.shape[0], batch_size), desc=f"Encoding {position_name}/{channel_name}"): | ||
batch_slice = v[t0 : t0 + batch_size].unsqueeze(1) | ||
batch_slice = torch.nn.functional.interpolate( | ||
batch_slice, size=input_spatial_size, mode="trilinear", align_corners=False, | ||
) | ||
|
||
feat = vae.encode(batch_slice)[0] # mean, | ||
feat = feat.flatten(start_dim=1) # (b, latent_dim) | ||
|
||
feat_np = feat.cpu().numpy() | ||
for i, embedding in enumerate(feat_np): | ||
embeddings_list.append(embedding) | ||
timepoints_list.append(timepoint + i) | ||
timepoint += feat.shape[0] | ||
|
||
embeddings_array = np.stack(embeddings_list) | ||
n_samples, n_features = embeddings_array.shape | ||
|
||
ds = xr.Dataset({ | ||
'embeddings': (['sample', 'feature'], embeddings_array) | ||
}, coords={ | ||
'sample': range(n_samples), | ||
'feature': range(n_features), | ||
't': ('sample', timepoints_list) | ||
}) | ||
|
||
ds.attrs['position_name'] = position_name | ||
ds.attrs['channel_name'] = channel_name | ||
|
||
return ds | ||
|
||
@click.command() | ||
@click.option("--source_position", "-s", type=click.Path(exists=True, path_type=Path), required=True, help="Full path to source position (e.g., '/path/to/plate.zarr/A/1/0')") | ||
@click.option("--target_position", "-t", type=click.Path(exists=True, path_type=Path), required=True, help="Full path to target position (e.g., '/path/to/plate.zarr/B/2/0')") | ||
@click.option("--source_channel", "-sc", type=str, required=True, help="Channel name for source position") | ||
@click.option("--target_channel", "-tc", type=str, required=True, help="Channel name for target position") | ||
@click.option("-z", type=int, default=32, help="Depth dimension for VAE input") | ||
@click.option("-y", type=int, default=512, help="Height dimension for VAE input") | ||
@click.option("-x", type=int, default=512, help="Width dimension for VAE input") | ||
@click.option("--ckpt_path", "-c", type=click.Path(exists=True, path_type=Path), required=True, | ||
help="Path to the VAE model checkpoint for loading.") | ||
@click.option("--batch_size", "-b", type=int, default=4) | ||
@click.option("--device", "-d", type=str, default="cuda") | ||
@click.option("--output_dir", "-o", type=click.Path(path_type=Path), help="Path to save source embeddings") | ||
def embed_dataset(source_position, target_position, source_channel, target_channel, z, y, x, | ||
ckpt_path, batch_size, device, output_dir) -> None: | ||
"""Encode positions using a pre-trained VAE and optionally compute FID or save embeddings. | ||
|
||
This function loads two zarr positions, encodes them using a variational autoencoder, | ||
and can either compute FID scores or save embeddings with metadata to a parquet file. | ||
|
||
Parameters | ||
---------- | ||
source_position : Path | ||
Full path to the source position (e.g., '/path/to/plate.zarr/A/1/0') | ||
target_position : Path | ||
Full path to the target position (e.g., '/path/to/plate.zarr/B/2/0') | ||
source_channel : str | ||
Channel name for source position | ||
target_channel : str | ||
Channel name for target position | ||
z : int | ||
Depth dimension for VAE input | ||
y : int | ||
Height dimension for VAE input | ||
x : int | ||
Width dimension for VAE input | ||
ckpt_path : Path | ||
Path to the pre-trained VAE model checkpoint (.pt file) | ||
batch_size : int | ||
Number of timepoints to process simultaneously through the VAE | ||
device : str | ||
Device to run computations on ("cuda" or "cpu") | ||
output_dir : Path | ||
Path to save embeddings | ||
""" | ||
|
||
# ----------------- VAE ----------------- # | ||
if device == "cuda" and not torch.cuda.is_available(): | ||
warnings.warn("CUDA is not available, using CPU instead") | ||
device = "cpu" | ||
|
||
vae = torch.jit.load(ckpt_path).to(device) | ||
vae.eval() | ||
|
||
source_position = open_ome_zarr(source_position) | ||
source_channel_names = source_position.channel_names | ||
assert source_channel in source_channel_names, f"Channel {source_channel} not found in source position" | ||
|
||
target_position = open_ome_zarr(target_position) | ||
target_channel_names = target_position.channel_names | ||
assert target_channel in target_channel_names, f"Channel {target_channel} not found in target position" | ||
|
||
input_spatial_size = (z, y, x) | ||
|
||
if output_dir: | ||
output_dir = Path(output_dir) | ||
source_name = source_position.zgroup.name.split('/')[-1] if source_position.zgroup.name else "source" | ||
target_name = target_position.zgroup.name.split('/')[-1] if target_position.zgroup.name else "target" | ||
source_output = output_dir / f"{source_name}_{source_channel}.zarr" | ||
target_output = output_dir / f"{target_name}_{target_channel}.zarr" | ||
|
||
source_ds = embed_position( | ||
position=source_position, vae=vae, | ||
channel_name=source_channel, | ||
device=device, batch_size=batch_size, | ||
input_spatial_size=input_spatial_size, | ||
) | ||
source_ds.to_zarr(source_output, mode='w') | ||
print(f"Source embeddings saved to: {source_output}") | ||
|
||
target_ds = embed_position( | ||
position=target_position, vae=vae, | ||
channel_name=target_channel, | ||
device=device, batch_size=batch_size, | ||
input_spatial_size=input_spatial_size, | ||
) | ||
target_ds.to_zarr(target_output, mode='w') | ||
print(f"Target embeddings saved to: {target_output}") | ||
|
||
@click.command() | ||
@click.option("--source_path", "-s", type=click.Path(exists=True, path_type=Path), required=True, help="Path to the source embeddings zarr file") | ||
@click.option("--target_path", "-t", type=click.Path(exists=True, path_type=Path), required=True, help="Path to the target embeddings zarr file") | ||
def compute_fid_cli(source_path: Path, target_path: Path) -> None: | ||
"""Compute FID score between two embedding datasets. | ||
|
||
Parameters | ||
---------- | ||
source_path : Path | ||
Path to the source embeddings zarr file | ||
target_path : Path | ||
Path to the target embeddings zarr file | ||
|
||
Examples | ||
-------- | ||
$ python fid_ts.py compute-fid \\ | ||
-s source_embeddings.zarr \\ | ||
-t target_embeddings.zarr | ||
""" | ||
# Load the datasets | ||
source_ds = xr.open_zarr(source_path) | ||
target_ds = xr.open_zarr(target_path) | ||
|
||
# Get embeddings arrays | ||
source_embeddings = torch.tensor(source_ds.embeddings.values, dtype=torch.float32) | ||
target_embeddings = torch.tensor(target_ds.embeddings.values, dtype=torch.float32) | ||
|
||
fid_score = fid_from_features(source_embeddings, target_embeddings) | ||
|
||
# Get metadata from attributes | ||
source_channel = source_ds.attrs.get('channel_name', 'unknown') | ||
target_channel = target_ds.attrs.get('channel_name', 'unknown') | ||
source_position = source_ds.attrs.get('position_name', 'unknown') | ||
target_position = target_ds.attrs.get('position_name', 'unknown') | ||
|
||
print(f"Source: {source_position}/{source_channel} ({len(source_embeddings)} samples)") | ||
print(f"Target: {target_position}/{target_channel} ({len(target_embeddings)} samples)") | ||
print(f"FID score: {fid_score:.6f}") | ||
|
||
return fid_score | ||
|
||
@click.group() | ||
def cli(): | ||
"""VAE embedding and FID computation tools.""" | ||
pass | ||
|
||
cli.add_command(embed_dataset, name="embed") | ||
cli.add_command(compute_fid_cli, name="compute-fid") | ||
|
||
if __name__ == "__main__": | ||
cli() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
# Generate nucleus embeddings separately | ||
python fid_ts.py embed \ | ||
-s /hpc/projects/virtual_staining/datasets/huang-lab/crops/mantis_figure_4.zarr/0/HIST2H2BE/0000010 \ | ||
-t /hpc/projects/virtual_staining/datasets/huang-lab/crops/mantis_figure_4.zarr/0/HIST2H2BE/0000010 \ | ||
-sc Nuclei-prediction \ | ||
-tc Organelle \ | ||
-c /hpc/projects/virtual_staining/models/huang-lab/fid/nucleus_vae_ts.pt \ | ||
-o . \ | ||
-b 4 \ | ||
-d cuda | ||
|
||
# Generate membrane embeddings separately | ||
python fid_ts.py embed \ | ||
-s /hpc/projects/virtual_staining/datasets/huang-lab/crops/mantis_figure_4.zarr/0/HIST2H2BE/0000010 \ | ||
-t /hpc/projects/virtual_staining/datasets/huang-lab/crops/mantis_figure_4.zarr/0/HIST2H2BE/0000010 \ | ||
-sc Membrane-prediction \ | ||
-tc Membrane \ | ||
-c /hpc/projects/virtual_staining/models/huang-lab/fid/membrane_vae_ts.pt \ | ||
-o . \ | ||
-b 4 \ | ||
-d cuda | ||
|
||
# Compute FID from separate embedding files | ||
python fid_ts.py compute-fid \ | ||
-s _Nuclei-prediction.zarr \ | ||
-t _Organelle.zarr | ||
|
||
python fid_ts.py compute-fid \ | ||
-s _Membrane-prediction.zarr \ | ||
-t _Membrane.zarr |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is this intentional?