Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 77 additions & 0 deletions flex.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# flex.py
import torch
from torch import nn

@torch.no_grad()
def speculative_generate(
target_model: nn.Module,
draft_model: nn.Module,
input_ids: torch.Tensor,
max_new_tokens: int,
eos_token_id: int | None = None,
temperature: float = 0.0,
top_p: float | None = None,
rng_seed: int | None = 0,
):
"""
Deterministic speculative decoding that matches baseline greedy when temperature == 0.
When temperature > 0, behaves like stochastic speculative decoding.
"""

device = input_ids.device
torch.manual_seed(rng_seed if rng_seed is not None else 0)

# Put both models on same device & in eval mode
target_model.to(device).eval()
draft_model.to(device).eval()

seq = input_ids.clone()
generated = []

for _ in range(max_new_tokens):
# -------------------- Draft proposes --------------------
with torch.no_grad():
logits_d = draft_model(seq)
next_token_logits = logits_d[:, -1, :]

if temperature == 0.0:
draft_token = torch.argmax(next_token_logits, dim=-1)
else:
probs = torch.softmax(next_token_logits / temperature, dim=-1)
if top_p is not None:
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
cutoff = cumulative_probs > top_p
sorted_probs[cutoff] = 0.0
probs = torch.zeros_like(probs).scatter(-1, sorted_indices, sorted_probs)
probs = probs / probs.sum(dim=-1, keepdim=True)
draft_token = torch.multinomial(probs, 1).squeeze(-1)

seq_draft = torch.cat([seq, draft_token.unsqueeze(1)], dim=1)

# -------------------- Target verifies --------------------
with torch.no_grad():
logits_t = target_model(seq)
target_next_logits = logits_t[:, -1, :]

if temperature == 0.0:
target_token = torch.argmax(target_next_logits, dim=-1)
else:
probs_t = torch.softmax(target_next_logits / temperature, dim=-1)
target_token = torch.multinomial(probs_t, 1).squeeze(-1)

# -------------------- Accept or reject --------------------
if target_token.item() == draft_token.item():
# accept
seq = seq_draft
generated.append(target_token.item())
else:
# reject draft; append target token
seq = torch.cat([seq, target_token.unsqueeze(1)], dim=1)
generated.append(target_token.item())

# -------------------- Stop on EOS --------------------
if eos_token_id is not None and generated[-1] == eos_token_id:
break

return seq, torch.tensor(generated, device=device)
Loading