Skip to content
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
#### A PyTorch-native agentic RL library that lets you focus on algorithms—not infra.
[![Unit Tests](https://github.com/meta-pytorch/forge/actions/workflows/unit_test.yaml/badge.svg?branch=main)](https://github.com/meta-pytorch/forge/actions/workflows/unit_test.yaml?query=branch%3Amain)
[![GPU Tests](https://github.com/meta-pytorch/forge/actions/workflows/gpu_test.yaml/badge.svg?branch=main)](https://github.com/meta-pytorch/forge/actions/workflows/gpu_test.yaml?query=branch%3Amain)
[![Discord](https://img.shields.io/badge/Discord-OpenEnv-7289da?style=flat&logo=discord&logoColor=white)](https://discord.gg/YsTYBh6PD9)

## Overview
The primary purpose of the torchforge ecosystem is to delineate infra concerns from model concerns thereby making RL experimentation easier. torchforge delivers this by providing clear RL abstractions and one scalable implementation of these abstractions. When you need fine-grained control over placement, fault handling/redirecting training loads during a run, or communication patterns, the primitives are there. When you don’t, you can focus purely on your RL algorithm.
Expand Down
Loading