Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions tritonbench/operators/fp8_gemm/fp8_gemm.py
Original file line number Diff line number Diff line change
Expand Up @@ -189,6 +189,27 @@ def blackwell_persistent_tma_fp8_gemm(self, a, b, scale_a, scale_b):
self.extra_args.scaling_rowwise,
)

@register_benchmark(enabled=True)
def blackwell_pt2_fp8_gemm(self, a, b, scale_a, scale_b):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Include scaling type in the name? If not clarify how this is generic. Does everything in this file work with all kinds of scaling (I assume its an input generation problem).

torch._dynamo.reset()
with inductor_config.patch(
max_autotune=True,
max_autotune_gemm_backends="TRITON",
autotune_fallback_to_aten=False,
):
f = lambda a, b: torch._scaled_mm(
a,
b,
scale_a,
scale_b,
use_fast_accum=True,
out_dtype=self._get_dtype()
)
compiled = torch.compile(f, dynamic=False)
compiled(a, b)

return lambda: compiled(a, b)

@register_benchmark()
def triton_fp8_gemm(self, a, b, scale_a, scale_b):
return lambda: tutorial_matmul(a, b)
Expand Down
Loading