Skip to content

Commit 1994800

Browse files
committed
[add] funcrcl2, funcrcl3; [update] upcic, upciclem2
1 parent 25c0084 commit 1994800

File tree

1 file changed

+30
-11
lines changed

1 file changed

+30
-11
lines changed

set.mm

Lines changed: 30 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -835476,6 +835476,21 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835476835476
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
835477835477
$)
835478835478

835479+
${
835480+
funcrcl2.f $e |- ( ph -> F ( D Func E ) G ) $.
835481+
$( Reverse closure for a functor. (Contributed by Zhi Wang,
835482+
17-Sep-2025.) $)
835483+
funcrcl2 $p |- ( ph -> D e. Cat ) $=
835484+
( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simpld ) AB
835485+
GHZCGHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835486+
835487+
$( Reverse closure for a functor. (Contributed by Zhi Wang,
835488+
17-Sep-2025.) $)
835489+
funcrcl3 $p |- ( ph -> E e. Cat ) $=
835490+
( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simprd ) AB
835491+
GHZCGHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835492+
$}
835493+
835479835494
${
835480835495
$d B x y z $. $d F x y z $. $d G x y z $. $d H x y z $. $d J x y z $.
835481835496
$( A utility theorem for proving equivalence of "is a functor".
@@ -835533,11 +835548,13 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835533835548
upciclem2.l $e |- ( ph -> L e. ( Y H X ) ) $.
835534835549
upciclem2.m $e |- ( ph -> M e. ( Z J ( F ` X ) ) ) $.
835535835550
upciclem2.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835551+
upciclem2.1 $e |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w )
835552+
f = ( ( G ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) $.
835536835553
upciclem2.mn $e |- ( ph -> M = ( ( G ` L )
835537835554
( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) $.
835538835555
upciclem2.nm $e |- ( ph -> N = ( ( G ` K )
835539835556
( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) $.
835540-
$( Lemma for ~ upcic . (Contributed by Zhi Wang, 16-Sep-2025.) $)
835557+
$( Lemma for ~ upcic . (Contributed by Zhi Wang, XX-Sep-2025.) $)
835541835558
upciclem2 $p |- ( ph -> ( L ( <. X , Y >. .x. X ) K )
835542835559
= ( ( Id ` D ) ` X ) ) $=
835543835560
( ) ? $.
@@ -835571,16 +835588,18 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835571835588
upcic $p |- ( ph -> X ( ~=c ` D ) Y ) $=
835572835589
( vp vq cv cfv cop co wceq ccic wbr wreu wrex upciclem1 reurex wcel simpl
835573835590
syl wa 3syl ciso eqid cfunc ccat simpll df-br sylib funcrcl 4syl ad2antrr
835574-
cco ccid simplrl simprl simprr simplrr upciclem2 isisod brcici rexlimddv
835575-
) APUOUQZLUROTRKURZUSSKURZQUTUTVAZRSFVBURVCZUORSMUTZAWPUOWRVDWPUOWRVEABDI
835576-
GKLMNOPQRSTUOUKULUMVFWPUOWRVGVJAWMWRVHZWPVKZVKZOUPUQZLURPTWOUSWNQUTUTVAZW
835577-
QUPSRMUTZXAAXCUPXDVDXCUPXDVEAWTVIACDUAHKLMNPOQSRTUPUNUIUJVFXCUPXDVGVLXAXB
835578-
XDVHZXCVKZVKZDFWMFVMURZRSXHVNZUBXGAKLUSZFJVOUTZVHZFVPVHZJVPVHZVKXMAWTXFVQ
835579-
AKLXKVCZXLUGKLXKVRVSFJXJVTXMXNVIWAZARDVHWTXFUIWBZASDVHWTXFULWBZXGDFFWCURZ
835580-
FWDURZWMXBMXHRSUBUDXSVNZXIXTVNXPXQXRAWSWPXFWEZXAXEXCWFZXGDEFXSJKLMNWMXBOP
835581-
QRSTUBUCUDUEYAUFAXOWTXFUGWBZXQXRATEVHWTXFUHWBZYBYCAOTWNNUTVHWTXFUJWBZAPTW
835582-
ONUTVHWTXFUMWBZXAXEXCWGZAWSWPXFWHZWIXGDEFXSJKLMNXBWMPOQSRTUBUCUDUEYAUFYDX
835583-
RXQYEYCYBYGYFYIYHWIWJWKWLWL $.
835591+
ccid simplrl simprl wral simprr simplrr upciclem2 isisod brcici rexlimddv
835592+
cco ) APUOUQZLUROTRKURZUSZSKURZQUTUTVAZRSFVBURVCZUORSMUTZAWRUOWTVDWRUOWTV
835593+
EABDIGKLMNOPQRSTUOUKULUMVFWRUOWTVGVJAWNWTVHZWRVKZVKZOUPUQZLURPTWQUSZWOQUT
835594+
UTVAZWSUPSRMUTZXCAXFUPXGVDXFUPXGVEAXBVIACDUAHKLMNPOQSRTUPUNUIUJVFXFUPXGVG
835595+
VLXCXDXGVHZXFVKZVKZDFWNFVMURZRSXKVNZUBXJAKLUSZFJVOUTZVHZFVPVHZJVPVHZVKXPA
835596+
XBXIVQAKLXNVCZXOUGKLXNVRVSFJXMVTXPXQVIWAZARDVHXBXIUIWBZASDVHXBXIULWBZXJDF
835597+
FWMURZFWCURZWNXDMXKRSUBUDYBVNZXLYCVNXSXTYAAXAWRXIWDZXCXHXFWEZXJBDEFYBGIJK
835598+
LMNWNXDOPQRSTUBUCUDUEYDUFAXRXBXIUGWBZXTYAATEVHXBXIUHWBZYEYFAOTWONUTVHXBXI
835599+
UJWBZAPTWQNUTVHXBXIUMWBZAGUQIUQLUROWPBUQZKURZQUTUTVAIRYKMUTVDGTYLNUTWFBDW
835600+
FXBXIUKWBXCXHXFWGZAXAWRXIWHZWIXJCDEFYBHUAJKLMNXDWNPOQSRTUBUCUDUEYDUFYGYAX
835601+
TYHYFYEYJYIAHUQUAUQLURPXECUQZKURZQUTUTVAUASYOMUTVDHTYPNUTWFCDWFXBXIUNWBYN
835602+
YMWIWJWKWLWL $.
835584835603
$}
835585835604

835586835605

0 commit comments

Comments
 (0)