@@ -835476,6 +835476,21 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835476
835476
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
835477
835477
$)
835478
835478
835479
+ ${
835480
+ funcrcl2.f $e |- ( ph -> F ( D Func E ) G ) $.
835481
+ $( Reverse closure for a functor. (Contributed by Zhi Wang,
835482
+ 17-Sep-2025.) $)
835483
+ funcrcl2 $p |- ( ph -> D e. Cat ) $=
835484
+ ( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simpld ) AB
835485
+ GHZCGHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835486
+
835487
+ $( Reverse closure for a functor. (Contributed by Zhi Wang,
835488
+ 17-Sep-2025.) $)
835489
+ funcrcl3 $p |- ( ph -> E e. Cat ) $=
835490
+ ( ccat wcel cfunc co wbr cop wa df-br biimpi funcrcl 3syl simprd ) AB
835491
+ GHZCGHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835492
+ $}
835493
+
835479
835494
${
835480
835495
$d B x y z $. $d F x y z $. $d G x y z $. $d H x y z $. $d J x y z $.
835481
835496
$( A utility theorem for proving equivalence of "is a functor".
@@ -835533,11 +835548,13 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835533
835548
upciclem2.l $e |- ( ph -> L e. ( Y H X ) ) $.
835534
835549
upciclem2.m $e |- ( ph -> M e. ( Z J ( F ` X ) ) ) $.
835535
835550
upciclem2.n $e |- ( ph -> N e. ( Z J ( F ` Y ) ) ) $.
835551
+ upciclem2.1 $e |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w )
835552
+ f = ( ( G ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) $.
835536
835553
upciclem2.mn $e |- ( ph -> M = ( ( G ` L )
835537
835554
( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) $.
835538
835555
upciclem2.nm $e |- ( ph -> N = ( ( G ` K )
835539
835556
( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) $.
835540
- $( Lemma for ~ upcic . (Contributed by Zhi Wang, 16 -Sep-2025.) $)
835557
+ $( Lemma for ~ upcic . (Contributed by Zhi Wang, XX -Sep-2025.) $)
835541
835558
upciclem2 $p |- ( ph -> ( L ( <. X , Y >. .x. X ) K )
835542
835559
= ( ( Id ` D ) ` X ) ) $=
835543
835560
( ) ? $.
@@ -835571,16 +835588,18 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835571
835588
upcic $p |- ( ph -> X ( ~=c ` D ) Y ) $=
835572
835589
( vp vq cv cfv cop co wceq ccic wbr wreu wrex upciclem1 reurex wcel simpl
835573
835590
syl wa 3syl ciso eqid cfunc ccat simpll df-br sylib funcrcl 4syl ad2antrr
835574
- cco ccid simplrl simprl simprr simplrr upciclem2 isisod brcici rexlimddv
835575
- ) APUOUQZLUROTRKURZUSSKURZQUTUTVAZRSFVBURVCZUORSMUTZAWPUOWRVDWPUOWRVEABDI
835576
- GKLMNOPQRSTUOUKULUMVFWPUOWRVGVJAWMWRVHZWPVKZVKZOUPUQZLURPTWOUSWNQUTUTVAZW
835577
- QUPSRMUTZXAAXCUPXDVDXCUPXDVEAWTVIACDUAHKLMNPOQSRTUPUNUIUJVFXCUPXDVGVLXAXB
835578
- XDVHZXCVKZVKZDFWMFVMURZRSXHVNZUBXGAKLUSZFJVOUTZVHZFVPVHZJVPVHZVKXMAWTXFVQ
835579
- AKLXKVCZXLUGKLXKVRVSFJXJVTXMXNVIWAZARDVHWTXFUIWBZASDVHWTXFULWBZXGDFFWCURZ
835580
- FWDURZWMXBMXHRSUBUDXSVNZXIXTVNXPXQXRAWSWPXFWEZXAXEXCWFZXGDEFXSJKLMNWMXBOP
835581
- QRSTUBUCUDUEYAUFAXOWTXFUGWBZXQXRATEVHWTXFUHWBZYBYCAOTWNNUTVHWTXFUJWBZAPTW
835582
- ONUTVHWTXFUMWBZXAXEXCWGZAWSWPXFWHZWIXGDEFXSJKLMNXBWMPOQSRTUBUCUDUEYAUFYDX
835583
- RXQYEYCYBYGYFYIYHWIWJWKWLWL $.
835591
+ ccid simplrl simprl wral simprr simplrr upciclem2 isisod brcici rexlimddv
835592
+ cco ) APUOUQZLUROTRKURZUSZSKURZQUTUTVAZRSFVBURVCZUORSMUTZAWRUOWTVDWRUOWTV
835593
+ EABDIGKLMNOPQRSTUOUKULUMVFWRUOWTVGVJAWNWTVHZWRVKZVKZOUPUQZLURPTWQUSZWOQUT
835594
+ UTVAZWSUPSRMUTZXCAXFUPXGVDXFUPXGVEAXBVIACDUAHKLMNPOQSRTUPUNUIUJVFXFUPXGVG
835595
+ VLXCXDXGVHZXFVKZVKZDFWNFVMURZRSXKVNZUBXJAKLUSZFJVOUTZVHZFVPVHZJVPVHZVKXPA
835596
+ XBXIVQAKLXNVCZXOUGKLXNVRVSFJXMVTXPXQVIWAZARDVHXBXIUIWBZASDVHXBXIULWBZXJDF
835597
+ FWMURZFWCURZWNXDMXKRSUBUDYBVNZXLYCVNXSXTYAAXAWRXIWDZXCXHXFWEZXJBDEFYBGIJK
835598
+ LMNWNXDOPQRSTUBUCUDUEYDUFAXRXBXIUGWBZXTYAATEVHXBXIUHWBZYEYFAOTWONUTVHXBXI
835599
+ UJWBZAPTWQNUTVHXBXIUMWBZAGUQIUQLUROWPBUQZKURZQUTUTVAIRYKMUTVDGTYLNUTWFBDW
835600
+ FXBXIUKWBXCXHXFWGZAXAWRXIWHZWIXJCDEFYBHUAJKLMNXDWNPOQSRTUBUCUDUEYDUFYGYAX
835601
+ TYHYFYEYJYIAHUQUAUQLURPXECUQZKURZQUTUTVAUASYOMUTVDHTYPNUTWFCDWFXBXIUNWBYN
835602
+ YMWIWJWKWLWL $.
835584
835603
$}
835585
835604
835586
835605
0 commit comments