Skip to content

Commit 9795107

Browse files
authored
add a few more polynomial theorems to iset.mm (#5021)
* Add plyco to iset.mm Stated as in set.mm. The proof, although it is much rearranged, is based on the set.mm proof. The "degree" (really an upper bound for the degree) and coefficients come from elply2 rather than from deg and coeff . Parts of the proof are broken out into lemma plycolemc . * Add plycn to mmil.html * Remove unneeded hypotheses This is for plycj and coecj in set.mm. Because N is not mentioned in other hypotheses or the conclusion, there is no need for the N = ( deg ` F ) hypothesis and the proof can just use ( deg ` F ) where it had used N . The changes to plycjlem are just cosmetic (whitespace etc). * Add plycj to iset.mm Stated as in set.mm. The proof is generally similar but the details are different because it uses elply in place of deg and coeff . Includes lemma plycjlemc which is similar to plycjlem from set.mm but which specifies (an upper bound for a) degree and coefficients explicitly rather than via deg and coeff . Add coecj to mmil.html * Add plyrecj to iset.mm Stated as in set.mm. The proof is based on the set.mm proof although it is changed in many places, especially to handle coefficients via elply rather than the coeff syntax.
1 parent 1a2c381 commit 9795107

File tree

5 files changed

+297
-36
lines changed

5 files changed

+297
-36
lines changed

changes-set.txt

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -92,6 +92,8 @@ make a github issue.)
9292

9393
DONE:
9494
Date Old New Notes
95+
23-Sep-25 coecj [same] Removed unneeded hypothesis
96+
23-Sep-25 plycj [same] Removed unneeded hypothesis
9597
23-Sep-25 elfzolem1 [same] moved from GS's mathbox to main set.mm
9698
17-Sep-25 psdmul [same] Removed unneeded hypothesis
9799
17-Sep-25 psdvsca [same] Removed unneeded hypothesis

discouraged

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -12362,6 +12362,7 @@
1236212362
"plusgndx" is used by "topgrpstr".
1236312363
"plusgndx" is used by "tsetndxnplusgndx".
1236412364
"plusgndx" is used by "vscandxnplusgndx".
12365+
"plycjOLD" is used by "coecjOLD".
1236512366
"pm2.43cbi" is used by "ee233".
1236612367
"pm2.43cbi" is used by "ee33VD".
1236712368
"pmap1N" is used by "pmapglb2N".
@@ -15925,6 +15926,7 @@ New usage of "cnvoprabOLD" is discouraged (0 uses).
1592515926
New usage of "cnvsymOLD" is discouraged (0 uses).
1592615927
New usage of "cnvsymOLDOLD" is discouraged (0 uses).
1592715928
New usage of "cnvunop" is discouraged (2 uses).
15929+
New usage of "coecjOLD" is discouraged (0 uses).
1592815930
New usage of "com3rgbi" is discouraged (1 uses).
1592915931
New usage of "con3ALT" is discouraged (0 uses).
1593015932
New usage of "con3ALT2" is discouraged (0 uses).
@@ -18781,6 +18783,7 @@ New usage of "ply1basOLD" is discouraged (0 uses).
1878118783
New usage of "ply1idvr1OLD" is discouraged (0 uses).
1878218784
New usage of "ply1scl0OLD" is discouraged (0 uses).
1878318785
New usage of "ply1scl1OLD" is discouraged (0 uses).
18786+
New usage of "plycjOLD" is discouraged (1 uses).
1878418787
New usage of "plycnOLD" is discouraged (0 uses).
1878518788
New usage of "pm10.252" is discouraged (0 uses).
1878618789
New usage of "pm11.07" is discouraged (0 uses).
@@ -20336,6 +20339,7 @@ Proof modification of "cnvopabOLD" is discouraged (77 steps).
2033620339
Proof modification of "cnvoprabOLD" is discouraged (262 steps).
2033720340
Proof modification of "cnvsymOLD" is discouraged (69 steps).
2033820341
Proof modification of "cnvsymOLDOLD" is discouraged (88 steps).
20342+
Proof modification of "coecjOLD" is discouraged (263 steps).
2033920343
Proof modification of "com3rgbi" is discouraged (35 steps).
2034020344
Proof modification of "con3ALT" is discouraged (54 steps).
2034120345
Proof modification of "con3ALT2" is discouraged (14 steps).
@@ -21312,6 +21316,7 @@ Proof modification of "ply1basOLD" is discouraged (58 steps).
2131221316
Proof modification of "ply1idvr1OLD" is discouraged (151 steps).
2131321317
Proof modification of "ply1scl0OLD" is discouraged (137 steps).
2131421318
Proof modification of "ply1scl1OLD" is discouraged (132 steps).
21319+
Proof modification of "plycjOLD" is discouraged (283 steps).
2131521320
Proof modification of "plycnOLD" is discouraged (172 steps).
2131621321
Proof modification of "pm13.181OLD" is discouraged (20 steps).
2131721322
Proof modification of "pm2.21ddALT" is discouraged (10 steps).

iset.mm

Lines changed: 187 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -179136,6 +179136,193 @@ theorem as stated here (although versions with additional conditions,
179136179136
CISUJUDUEUF $.
179137179137
$}
179138179138

179139+
${
179140+
plyco.1 $e |- ( ph -> F e. ( Poly ` S ) ) $.
179141+
plyco.2 $e |- ( ph -> G e. ( Poly ` S ) ) $.
179142+
plyco.3 $e |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) $.
179143+
plyco.4 $e |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) $.
179144+
${
179145+
plycolemc.n $e |- ( ph -> N e. NN0 ) $.
179146+
plycolemc.a $e |- ( ph -> A : NN0 --> ( S u. { 0 } ) ) $.
179147+
plycolemc.z $e |- ( ph -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) $.
179148+
plycolemc.f $e |- ( ph -> F = ( x e. CC |-> sum_ k e. ( 0 ... N )
179149+
( ( A ` k ) x. ( x ^ k ) ) ) ) $.
179150+
$d G k z $. $d A k $. $d N k $. $d A d k x y w z $.
179151+
$d G d k x y w z $. $d N k w z $. $d S d x y w $. $d ph k x y z d w $.
179152+
$( Lemma for ~ plyco . The result expressed as a sum, with a degree and
179153+
coefficients for ` F ` specified as hypotheses. (Contributed by Jim
179154+
Kingdon, 20-Sep-2025.) $)
179155+
plycolemc $p |- ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... N )
179156+
( ( A ` k ) x. ( ( G ` z ) ^ k ) ) ) e. ( Poly ` S ) ) $=
179157+
( wcel cc vw vd cn0 cc0 cfz co cv cfv cexp cmul cmpt cply wi caddc wceq
179158+
csu c1 oveq2 sumeq1d mpteq2dv eleq1d imbi2d csn cxp wa cz 0z ffvelcdmda
179159+
wf plyf syl exp0d oveq2d cun wss plybss 0cnd snssd unssd 0nn0 ffvelcdmd
179160+
a1i sseldd adantr mulridd eqtrd eqeltrd fveq2 oveq12d sylancr mpteq2dva
179161+
fconstmpt eqtr4di plyconst syl2anc plyun0 eleqtrdi cof simprr peano2nn0
179162+
fsum1 ffvelcdm syl2an cn nn0p1nn feqmptd eqtr4d adantlr plymul expr cvv
179163+
exp1d cnex nnnn0 ad2antlr expcld eqidd offval2 expp1d sylibd expcom a2d
179164+
nnind impcom adantrr plyadd 0zd simplr nn0zd fzfigd eleqtrrdi ad3antrrr
179165+
elfznn0 adantl ad4ant13 mulcld fsumcl ad2antrr cuz nn0uz fsump1 nn0ind
179166+
mpcom ) JUCSADTUDJUEUFZGUGZEUHZDUGZIUHZUUEUIUFZUJUFZGUPZUKZFULUHZSZOADT
179167+
UDUAUGZUEUFZUUJGUPZUKZUUMSZUMADTUDUDUEUFZUUJGUPZUKZUUMSZUMADTUDUBUGZUEU
179168+
FZUUJGUPZUKZUUMSZUMADTUDUVDUQUNUFZUEUFZUUJGUPZUKZUUMSZUMAUUNUMUAUBJUUOU
179169+
DUOZUUSUVCAUVNUURUVBUUMUVNDTUUQUVAUVNUUPUUTUUJGUUOUDUDUEURUSUTVAVBUUOUV
179170+
DUOZUUSUVHAUVOUURUVGUUMUVODTUUQUVFUVOUUPUVEUUJGUUOUVDUDUEURUSUTVAVBUUOU
179171+
VIUOZUUSUVMAUVPUURUVLUUMUVPDTUUQUVKUVPUUPUVJUUJGUUOUVIUDUEURUSUTVAVBUUO
179172+
JUOZUUSUUNAUVQUURUULUUMUVQDTUUQUUKUVQUUPUUDUUJGUUOJUDUEURUSUTVAVBAUVBTU
179173+
DEUHZVCVDZUUMAUVBDTUVRUKUVSADTUVAUVRAUUGTSZVEZUVAUVRUUHUDUIUFZUJUFZUVRU
179174+
WAUDVFSUWCTSUVAUWCUOVGUWAUWCUVRTUWAUWCUVRUQUJUFUVRUWAUWBUQUVRUJUWAUUHAT
179175+
TUUGIAIUUMSZTTIVIZLFIVJVKZVHZVLVMUWAUVRAUVRTSUVTAFUDVCZVNZTUVRAFUWHTAHU
179176+
UMSFTVOKFHVPVKAUDTAVQVRVSZAUCUWIUDEPUDUCSAVTWBWAZWCWDZWEWFZUWLWGUUJUWCG
179177+
UDUUEUDUOUUFUVRUUIUWBUJUUEUDEWHUUEUDUUHUIURWIXAWJUWMWFWKDTUVRWLWMAUVSUW
179178+
IULUHZUUMAUWITVOZUVRUWISUVSUWNSUWJUWKUVRUWIWNWOFWPZWQWGUVDUCSZAUVHUVMAU
179179+
WQUVHUVMUMAUWQVEZUVHUVGTUVIEUHZVCVDZDTUUHUVIUIUFZUKZUJWRZUFZUNWRUFZUUMS
179180+
ZUVMAUWQUVHUXFAUWQUVHVEZVEBCFUVGUXDAUWQUVHWSAUWQUXDUUMSUVHUWRBCFUWTUXBU
179181+
WRUWTUWNUUMUWRUWOUWSUWISZUWTUWNSAUWOUWQUWJWDAUCUWIEVIZUVIUCSZUXHUWQPUVD
179182+
WTZUCUWIUVIEXBXCZUWSUWIWNWOUWPWQUWQAUXBUUMSZUWQUVIXDSAUXMUMZUVDXEADTUUH
179183+
UUOUIUFZUKZUUMSZUMADTUUHUQUIUFZUKZUUMSZUMADTUUHUVDUIUFZUKZUUMSZUMUXNUXN
179184+
UAUBUVIUUOUQUOZUXQUXTAUYDUXPUXSUUMUYDDTUXOUXRUUOUQUUHUIURUTVAVBUVOUXQUY
179185+
CAUVOUXPUYBUUMUVODTUXOUYAUUOUVDUUHUIURUTVAVBUVPUXQUXMAUVPUXPUXBUUMUVPDT
179186+
UXOUXAUUOUVIUUHUIURUTVAVBZUYEAUXSIUUMAUXSDTUUHUKZIADTUXRUUHUWAUUHUWGXLW
179187+
KADTTIUWFXFZXGLWGUVDXDSZAUYCUXMAUYHUYCUXMUMAUYHVEZUYCUYBIUXCUFZUUMSZUXM
179188+
AUYHUYCUYKAUYHUYCVEZVEBCFUYBIAUYHUYCWSAUWDUYLLWDABUGZFSCUGZFSVEZUYMUYNU
179189+
NUFFSZUYLMXHAUYOUYMUYNUJUFFSZUYLNXHXIXJUYIUYJUXBUUMUYIUYJDTUYAUUHUJUFZU
179190+
KUXBUYIDTUYAUUHUJUYBIXKTTTXKSZUYIXMWBUYIUVTVEZUUHUVDAUVTUUHTSZUYHUWGXHZ
179191+
UYHUWQAUVTUVDXNXOZXPUYITTUUGIAUWEUYHUWFWDVHUYIUYBXQAIUYFUOUYHUYGWDXRUYI
179192+
DTUXAUYRUYTUUHUVDVUBVUCXSWKXGVAXTYAYBYCVKYDAUYOUYPUWQMXHAUYOUYQUWQNXHXI
179193+
YEAUYOUYPUXGMXHYFXJUWRUXEUVLUUMUWRUXEDTUVFUWSUXAUJUFZUNUFZUKUVLUWRDTUVF
179194+
VUDUNUVGUXDXKTTUYSUWRXMWBZUWRUVTVEZUVEUUJGVUGUDUVDVUGYGVUGUVDAUWQUVTYHZ
179195+
YIYJVUGUUEUVESZVEZUUFUUIVUJUWITUUFAUWOUWQUVTVUIAHUWNSUWOAHUUMUWNKUWPYKU
179196+
WIHVPVKZYLVUJUCUWIUUEEAUXIUWQUVTVUIPYLVUIUUEUCSZVUGUUEUVDYMYNZWAWCVUJUU
179197+
HUUEAUVTVUAUWQVUIUWGYOVUMXPYPYQVUGUWSUXAVUGUWITUWSAUWOUWQUVTVUKYRZUWRUX
179198+
HUVTUXLWDZWCVUGUUHUVIAUVTVUAUWQUWGXHZUWQUXJAUVTUXKXOXPZYPUWRUVGXQUWRDTU
179199+
WSUXAUJUWTUXBXKUWITVUFVUOVUQUWTDTUWSUKUOUWRDTUWSWLWBUWRUXBXQXRXRUWRDTUV
179200+
KVUEVUGUUJVUDGUDUVDVUGUVDUCUDYSUHVUHYTWQVUGUUEUVJSZVEZUUFUUIVUSUWITUUFV
179201+
UGUWOVURVUNWDVUSUCUWIUUEEAUXIUWQUVTVURPYLVURVULVUGUUEUVIYMYNZWAWCVUSUUH
179202+
UUEVUGVUAVURVUPWDVUTXPYPUUEUVIUOUUFUWSUUIUXAUJUUEUVIEWHUUEUVIUUHUIURWIU
179203+
UAWKXGVAXTYAYBUUBUUC $.
179204+
$}
179205+
179206+
$d F a k n x y z $. $d G a k n x y z $. $d d k x y z ph $.
179207+
$d a k n x y z S $. $d a k n ph x y z w j $.
179208+
$( The composition of two polynomials is a polynomial. (Contributed by
179209+
Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro,
179210+
23-Aug-2014.) $)
179211+
plyco $p |- ( ph -> ( F o. G ) e. ( Poly ` S ) ) $=
179212+
( vk cv co wceq cc cexp cmul wa wcel cvv va vn vz vw vj c1 caddc cuz cima
179213+
cfv cc0 csn cfz csu cmpt cun cn0 cmap wrex ccom cply wss elply2 simprd wf
179214+
sylib plyf syl ffvelcdmda ad4ant14 ad2antrr simprr oveq1 oveq2d sumeq2sdv
179215+
feqmptd fmptco cbvmptv fveq2 oveq2 oveq12d cbvsumv mpteq2i eqeq2i simplrl
179216+
eqtri anbi2i simplrr wb simpld cnex ssexg sylancl c0ex unexg nn0ex elmapg
179217+
snex mpbid sylbir simprl plycolemc sylbi eqeltrd ex rexlimdvva mpd ) AUAL
179218+
ZUBLZUFUGMUHUJUIUKULZNZEBOUKXIUMMZKLZXHUJZBLZXMPMZQMZKUNZUOZNZRZUADXJUPZU
179219+
QURMZUSUBUQUSZEFUTZDVAUJZSZADOVBZYDAEYFSZYHYDRGBDKUBEUAVCVFZVDAYAYGUBUAUQ
179220+
YCAXIUQSZXHYCSZRZRZYAYGYNYARZYEUCOXLXNUCLZFUJZXMPMZQMZKUNZUOZYFYOUCBOOYQX
179221+
RYTFEAYPOSYQOSYMYAAOOYPFAFYFSZOOFVEHDFVGVHZVIVJAFUCOYQUONYMYAAUCOOFUUCVPV
179222+
KYNXKXTVLZXOYQNZXLXQYSKUUEXPYRXNQXOYQXMPVMVNVOVQYOYNXKEUDOXLUELZXHUJZUDLZ
179223+
UUFPMZQMZUEUNZUOZNZRZRZUUAYFSYAUUNYNXTUUMXKXSUULEXSUDOXLXNUUHXMPMZQMZKUNZ
179224+
UOUULBUDOXRUURXOUUHNZXLXQUUQKUUSXPUUPXNQXOUUHXMPVMVNVOVRUDOUURUUKXLUUQUUJ
179225+
KUEXMUUFNXNUUGUUPUUIQXMUUFXHVSXMUUFUUHPVTWAWBWCWFWDWGWGZUUOBCUCXHDKEFXIAY
179226+
IYMUUNGVKAUUBYMUUNHVKAXODSCLZDSRZXOUVAUGMDSYMUUNIVJAUVBXOUVAQMDSYMUUNJVJA
179227+
YKYLUUNWEUUOYOUQYBXHVEZUUTYOYLUVCAYKYLYAWHYOYBTSZUQTSYLUVCWIYODTSZXJTSUVD
179228+
YOYHOTSUVEAYHYMYAAYHYDYJWJVKWKDOTWLWMUKWNWRDXJTTWOWMWPYBUQXHTTWQWMWSWTYNX
179229+
KUUMXAUUOYOXTUUTUUDWTXBXCXDXEXFXG $.
179230+
$}
179231+
179232+
${
179233+
$d k x z A $. $d k x z F $. $d k x z N $. $d k x z ph $. $d k x z S $.
179234+
plycjlemc.n $e |- ( ph -> N e. NN0 ) $.
179235+
plycjlem.2 $e |- G = ( ( * o. F ) o. * ) $.
179236+
plycjlemc.a $e |- ( ph -> A : NN0 --> ( S u. { 0 } ) ) $.
179237+
plycjlemc.f $e |- ( ph -> F = ( z
179238+
e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) $.
179239+
plycjlemc.p $e |- ( ph -> F e. ( Poly ` S ) ) $.
179240+
$( Lemma for ~ plycj . (Contributed by Mario Carneiro, 24-Jul-2014.)
179241+
(Revised by Jim Kingdon, 22-Sep-2025.) $)
179242+
plycjlemc $p |- ( ph -> G = ( z e. CC |->
179243+
sum_ k e. ( 0 ... N ) ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) ) $=
179244+
( cc co cfv ccj cexp cmul wcel vx cc0 cfz cv csu cmpt ccom cjcl adantl wf
179245+
cjf a1i feqmptd wa cfn 0zd nn0zd fzfigd adantr cn0 csn cun wss plybss syl
179246+
cply snssi mp1i unssd fssd elfznn0 ffvelcdmd adantlr simplr expcld mulcld
179247+
0cn fsumcl wceq oveq1 oveq2d sumeq2sdv cbvmptv eqtrdi fveq2 fmptco fveq2d
179248+
eqtrid ad2antlr fsumcj cjmuld syl2anc cjexpd oveq1d eqtr2d oveq12d eqtr4d
179249+
fvco3 cjcj sumeq2dv eqtrd mpteq2dva ) AGBNUBHUCOZEUDZCPZBUDZQPZXDROZSOZEU
179250+
EZQPZUFZBNXCXDQCUGPZXFXDROZSOZEUEZUFAGQFUGZQUGXLJABUANNXGXCXEUAUDZXDROZSO
179251+
ZEUEZQPZXKQXQXFNTZXGNTZAXFUHZUIABNNQNNQUJAUKULUMZAUABNNYAXGYBFQAXRNTZUNZX
179252+
CXTEAXCUOTZYGAUBHAUPAHIUQURZUSYHXDXCTZUNZXEXSAYKXENTZYGAYKUNUTNXDCAUTNCUJ
179253+
ZYKAUTDUBVAZVBNCKADYONAFDVFPTDNVCMDFVDVEUBNTYONVCAVQUBNVGVHVIVJUSZYKXDUTT
179254+
ZAXDHVKZUIVLZVMYLXRXDAYGYKVNYKYQYHYRUIVOVPVRAFBNXCXEXNSOZEUEZUFUANYAUFLBU
179255+
ANUUAYAXFXRVSZXCYTXTEUUBXNXSXESXFXRXDRVTWAWBWCWDYFXFYAQWEWFXRXGVSZYAXJQUU
179256+
CXCXTXIEUUCXSXHXESXRXGXDRVTWAWBWGWFWHABNXKXPAYCUNZXKXCXIQPZEUEXPUUDXCXIEA
179257+
YIYCYJUSUUDYKUNZXEXHAYKYMYCYSVMZUUFXGXDYCYDAYKYEWIZYKYQUUDYRUIZVOZVPWJUUD
179258+
XCUUEXOEUUFUUEXEQPZXHQPZSOXOUUFXEXHUUGUUJWKUUFXMUUKXNUULSUUFYNYQXMUUKVSAY
179259+
KYNYCYPVMUUIUTNXDQCWRWLUUFUULXGQPZXDROXNUUFXGXDUUHUUIWMUUFUUMXFXDRYCUUMXF
179260+
VSAYKXFWSWIWNWOWPWQWTXAXBXA $.
179261+
$}
179262+
179263+
${
179264+
$d A k x z $. $d F a k n x z $. $d G a n $. $d N k x z $.
179265+
$d S a k n x z $. $d a j k n w z $. $d a k n ph x z $.
179266+
plycj.2 $e |- G = ( ( * o. F ) o. * ) $.
179267+
plycj.3 $e |- ( ( ph /\ x e. S ) -> ( * ` x ) e. S ) $.
179268+
plycj.4 $e |- ( ph -> F e. ( Poly ` S ) ) $.
179269+
$( The double conjugation of a polynomial is a polynomial. (The single
179270+
conjugation is not because our definition of polynomial includes only
179271+
holomorphic functions, i.e. no dependence on ` ( * `` z ) `
179272+
independently of ` z ` .) (Contributed by Mario Carneiro,
179273+
24-Jul-2014.) $)
179274+
plycj $p |- ( ph -> G e. ( Poly ` S ) ) $=
179275+
( vj vz vk cc cc0 cv co cfv cn0 wcel ccj cvv vw vn cfz cexp cmul csu cmpt
179276+
va wceq csn cun cmap wrex cply wa elply sylib simprd ccom simplrl simplrr
179277+
wss wf cnex a1i simpld ssexd ad2antrr c0ex snex unexg sylancl nn0ex mpbid
179278+
elmapd simpr oveq1 oveq2d sumeq2sdv cbvmptv fveq2 oveq12d cbvsumv mpteq2i
179279+
oveq2 eqtri eqtrdi plycjlemc snssi mp1i unssd adantr elfznn0 adantl fvco3
179280+
0cn syl2anc ffvelcdmd wi wo wral ralrimiva eleq1d rspccv syl elsni fveq2d
179281+
cj0 wb eqeltrdi elsng mpbird orim12d 3imtr4g ad3antrrr mpd eqeltrd elplyd
179282+
elun plyun0 eleqtrdi ex rexlimdvva ) ADUALMUBNZUCOZINZUHNZPZUANZYFUDOZUEO
179283+
ZIUFZUGZUIZUHCMUJZUKZQULOZUMUBQUMZECUNPZRZACLVBZYRADYSRZUUAYRUOHUACIUBDUH
179284+
UPUQZURAYNYTUBUHQYQAYDQRZYGYQRZUOZUOZYNYTUUGYNUOZEYPUNPZYSUUHEJLYEKNZSYGU
179285+
SPZJNZUUJUDOZUEOKUFUGUUIUUHJYGCKDEYDAUUDUUEYNUTZFUUHUUEQYPYGVCZAUUDUUEYNV
179286+
AUUHYPQYGTTUUHCTRZYOTRYPTRAUUPUUFYNACLTLTRAVDVEAUUAYRUUCVFZVGVHMVIVJCYOTT
179287+
VKVLQTRUUHVMVEVOVNZUUHDYMJLYEUUJYGPZUUMUEOZKUFZUGZUUGYNVPYMJLYEYHUULYFUDO
179288+
ZUEOZIUFZUGUVBUAJLYLUVEYIUULUIZYEYKUVDIUVFYJUVCYHUEYIUULYFUDVQVRVSVTJLUVE
179289+
UVAYEUVDUUTIKYFUUJUIYHUUSUVCUUMUEYFUUJYGWAYFUUJUULUDWEWBWCWDWFWGAUUBUUFYN
179290+
HVHWHUUHJUUKYPKYDAYPLVBUUFYNACYOLUUQMLRYOLVBAWPMLWIWJWKVHUUNUUHUUJYERZUOZ
179291+
UUKUUSSPZYPUVHUUOUUJQRZUUKUVIUIUUHUUOUVGUURWLZUVGUVJUUHUUJYDWMWNZQYPUUJSY
179292+
GWOWQUVHUUSYPRZUVIYPRZUVHQYPUUJYGUVKUVLWRAUVMUVNWSUUFYNUVGAUUSCRZUUSYORZW
179293+
TUVICRZUVIYORZWTUVMUVNAUVOUVQUVPUVRABNZSPZCRZBCXAUVOUVQWSAUWABCGXBUWAUVQB
179294+
UUSCUVSUUSUIUVTUVICUVSUUSSWAXCXDXEUVPUVRWSAUVPUVRUVIMUIZUVPUVIMSPMUVPUUSM
179295+
SUUSMXFXGXHWGZUVPUVILRUVRUWBXIUVPUVIMLUWCWPXJUVIMLXKXEXLVEXMUUSCYOXSUVICY
179296+
OXSXNXOXPXQXRXQCXTYAYBYCXP $.
179297+
$}
179298+
179299+
${
179300+
$d A a k n x $. $d F a k n x $. $d G x $. $d S x $. $d V x $.
179301+
$( A polynomial with real coefficients distributes under conjugation.
179302+
(Contributed by Mario Carneiro, 24-Jul-2014.) $)
179303+
plyrecj $p |- ( ( F e. ( Poly ` RR ) /\ A e. CC ) ->
179304+
( * ` ( F ` A ) ) = ( F ` ( * ` A ) ) ) $=
179305+
( vx vn vk va cr cfv wcel cc wa cc0 cv co cexp cmul wceq cn0 ccj adantr
179306+
cply cfz csu cmpt csn cun cmap wrex simpl elply sylib simprd simprl nn0zd
179307+
wss 0zd fzfigd wf simplrr cvv snssi ax-mp ssequn2 mpbi reex eqeltri nn0ex
179308+
0re elmap feq3 bitri elfznn0 adantl ffvelcdmd recnd simpllr expcld mulcld
179309+
fsumcj cjmuld simprr cjred cjexpd oveq12d eqtrd sumeq2dv simpr eqid oveq1
179310+
wb fveq1d oveq2d sumeq2sdv simplr fsumcl fvmptd3 cjcld 3eqtr4d rexlimdvva
179311+
fveq2d ex mpd ) BGUAHIZAJIZKZBCJLDMZUBNZEMZFMZHZCMZXHONZPNZEUCZUDZQZFGLUE
179312+
ZUFZRUGNZUHDRUHZABHZSHZASHZBHZQZXEGJUOZXTXEXCYFXTKXCXDUICGEDBFUJUKULXEXPY
179313+
EDFRXSXEXFRIZXIXSIZKZKZXPYEYJXPKZXGXJAXHONZPNZEUCZSHZXGXJYCXHONZPNZEUCZYB
179314+
YDYJYOYRQXPYJYOXGYMSHZEUCYRYJXGYMEYJLXFYJUPYJXFXEYGYHUMUNUQZYJXHXGIZKZXJY
179315+
LUUBXJUUBRGXHXIUUBYHRGXIURZXEYGYHUUAUSYHRXRXIURZUUCXRRXIXRGUTXQGUOZXRGQZL
179316+
GIUUEVHLGVAVBXQGVCVDZVEVFVGVIUUFUUDUUCWJUUGXRGRXIVJVBVKZUKUUAXHRIYJXHXFVL
179317+
VMZVNVOZUUBAXHXCXDYIUUAVPZUUIVQZVRZVSYJXGYSYQEUUBYSXJSHZYLSHZPNYQUUBXJYLU
179318+
UJUULVTUUBUUNXJUUOYPPUUBXJUUBRGXHXIYJUUCUUAYJYHUUCXEYGYHWAUUHUKTUUIVNWBUU
179319+
BAXHUUKUUIWCWDWEWFWETYKYAYNSYKYAAXOHZYNYKABXOYJXPWGZWKYJUUPYNQXPYJCAXNYNJ
179320+
XOJXOWHZXKAQZXGXMYMEUUSXLYLXJPXKAXHOWIWLWMXCXDYIWNZYJXGYMEYTUUMWOWPTWEWTY
179321+
KYDYCXOHZYRYKYCBXOUUQWKYJUVAYRQXPYJCYCXNYRJXOJUURXKYCQZXGXMYQEUVBXLYPXJPX
179322+
KYCXHOWIWLWMYJAUUTWQZYJXGYQEYTUUBXJYPUUJUUBYCXHYJYCJIUUAUVCTUUIVQVRWOWPTW
179323+
EWRXAWSXB $.
179324+
$}
179325+
179139179326

179140179327
$(
179141179328
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

mmil.raw.html

Lines changed: 15 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -14433,6 +14433,21 @@
1443314433
and theorems</td>
1443414434
</tr>
1443514435

14436+
<tr>
14437+
<td>plycn</td>
14438+
<td><i>none</i></td>
14439+
<td>should be provable but needs a look through the continuity
14440+
theorems being used including expcn , mpomulcn , etc. It should
14441+
be possible to replace the use of deg and coeff with ~ elply2</td>
14442+
</tr>
14443+
14444+
<tr>
14445+
<td>coecj</td>
14446+
<td>~ plycjlemc</td>
14447+
<td>the key difference between coecj and plycjlemc is that the latter
14448+
specifies coefficients explicitly</td>
14449+
</tr>
14450+
1443614451
<tr>
1443714452
<td>fta1</td>
1443814453
<td><i>none</i></td>

0 commit comments

Comments
 (0)