@@ -18769,6 +18769,40 @@ Converse of the inference rule of (universal) generalization ~ ax-gen .
18769
18769
( wo wex 19.43 19.9 orbi1i bitri ) ABECFACFZBCFZEALEABCGKALACDHIJ $.
18770
18770
$}
18771
18771
18772
+ ${
18773
+ $d x y $.
18774
+ spimfv.nf $e |- F/ x ps $.
18775
+ spimfv.1 $e |- ( x = y -> ( ph -> ps ) ) $.
18776
+ $( Version of ~ spim with a disjoint variable condition, which does not
18777
+ require ~ ax-13 . See ~ spimvw for a version with two disjoint variable
18778
+ conditions, requiring fewer axioms, and ~ spimv for another variant.
18779
+ (Contributed by BJ, 31-May-2019.) $)
18780
+ spimfv $p |- ( A. x ph -> ps ) $=
18781
+ ( weq wi ax6ev eximii 19.36i ) ABCECDGABHCCDIFJK $.
18782
+ $}
18783
+
18784
+ ${
18785
+ $d x y $.
18786
+ chvarfv.nf $e |- F/ x ps $.
18787
+ chvarfv.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
18788
+ chvarfv.2 $e |- ph $.
18789
+ $( Version of ~ chvar with a disjoint variable condition, which does not
18790
+ require ~ ax-13 . (Contributed by BJ, 31-May-2019.) $)
18791
+ chvarfv $p |- ps $=
18792
+ ( weq biimpd spimfv mpg ) ABCABCDECDHABFIJGK $.
18793
+ $}
18794
+
18795
+ ${
18796
+ $d x y $. $d y ph $.
18797
+ cbv3v2.nf $e |- F/ x ps $.
18798
+ cbv3v2.1 $e |- ( x = y -> ( ph -> ps ) ) $.
18799
+ $( Version of ~ cbv3 with two disjoint variable conditions, which does not
18800
+ require ~ ax-11 nor ~ ax-13 . (Contributed by BJ, 24-Jun-2019.) (Proof
18801
+ shortened by Wolf Lammen, 30-Aug-2021.) $)
18802
+ cbv3v2 $p |- ( A. x ph -> A. y ps ) $=
18803
+ ( wal spimfv alrimiv ) ACGBDABCDEFHI $.
18804
+ $}
18805
+
18772
18806
${
18773
18807
sbimd.1 $e |- F/ x ph $.
18774
18808
sbimd.2 $e |- ( ph -> ( ps -> ch ) ) $.
@@ -18961,40 +18995,6 @@ Converse of the inference rule of (universal) generalization ~ ax-gen .
18961
18995
drsb2 $p |- ( A. x x = y -> ( [ x / z ] ph <-> [ y / z ] ph ) ) $=
18962
18996
( weq wsb wb sbequ sps ) BCEADBFADCFGBABCDHI $.
18963
18997
18964
- ${
18965
- $d x y $.
18966
- spimv1.nf $e |- F/ x ps $.
18967
- spimv1.1 $e |- ( x = y -> ( ph -> ps ) ) $.
18968
- $( Version of ~ spim with a disjoint variable condition, which does not
18969
- require ~ ax-13 . See ~ spimvw for a version with two disjoint variable
18970
- conditions, requiring fewer axioms, and ~ spimv for another variant.
18971
- (Contributed by BJ, 31-May-2019.) $)
18972
- spimv1 $p |- ( A. x ph -> ps ) $=
18973
- ( weq wi ax6ev eximii 19.36i ) ABCECDGABHCCDIFJK $.
18974
- $}
18975
-
18976
- ${
18977
- $d x y $.
18978
- chvarfv.nf $e |- F/ x ps $.
18979
- chvarfv.1 $e |- ( x = y -> ( ph <-> ps ) ) $.
18980
- chvarfv.2 $e |- ph $.
18981
- $( Version of ~ chvar with a disjoint variable condition, which does not
18982
- require ~ ax-13 . (Contributed by BJ, 31-May-2019.) $)
18983
- chvarfv $p |- ps $=
18984
- ( weq biimpd spimv1 mpg ) ABCABCDECDHABFIJGK $.
18985
- $}
18986
-
18987
- ${
18988
- $d x y $. $d y ph $.
18989
- cbv3v2.nf $e |- F/ x ps $.
18990
- cbv3v2.1 $e |- ( x = y -> ( ph -> ps ) ) $.
18991
- $( Version of ~ cbv3 with two disjoint variable conditions, which does not
18992
- require ~ ax-11 nor ~ ax-13 . (Contributed by BJ, 24-Jun-2019.) (Proof
18993
- shortened by Wolf Lammen, 30-Aug-2021.) $)
18994
- cbv3v2 $p |- ( A. x ph -> A. y ps ) $=
18995
- ( wal spimv1 alrimiv ) ACGBDABCDEFHI $.
18996
- $}
18997
-
18998
18998
${
18999
18999
$d x y $.
19000
19000
equsalv.nf $e |- F/ x ps $.
@@ -19792,7 +19792,7 @@ Corresponds to the dual of Axiom (B) of modal logic. (Contributed by NM,
19792
19792
$( Version of ~ cbv3 with a disjoint variable condition, which does not
19793
19793
require ~ ax-13 . (Contributed by BJ, 31-May-2019.) $)
19794
19794
cbv3v $p |- ( A. x ph -> A. y ps ) $=
19795
- ( wal nf5ri hbal spimv1 alrimih ) ACHBDADCADEIJABCDFGKL $.
19795
+ ( wal nf5ri hbal spimfv alrimih ) ACHBDADCADEIJABCDFGKL $.
19796
19796
$}
19797
19797
19798
19798
${
@@ -20346,7 +20346,7 @@ theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the
20346
20346
$d x ps $.
20347
20347
spimv.1 $e |- ( x = y -> ( ph -> ps ) ) $.
20348
20348
$( A version of ~ spim with a distinct variable requirement instead of a
20349
- bound-variable hypothesis. See ~ spimv1 and ~ spimvw for versions
20349
+ bound-variable hypothesis. See ~ spimfv and ~ spimvw for versions
20350
20350
requiring fewer axioms. (Contributed by NM, 31-Jul-1993.) $)
20351
20351
spimv $p |- ( A. x ph -> ps ) $=
20352
20352
( nfv spim ) ABCDBCFEG $.
@@ -527185,7 +527185,7 @@ replacing a nonfree hypothesis with a disjoint variable condition (see
527185
527185
${
527186
527186
$d x y $. $d x ps $.
527187
527187
bj-spimvv.1 $e |- ( x = y -> ( ph -> ps ) ) $.
527188
- $( Version of ~ spimv and ~ spimv1 with a disjoint variable condition,
527188
+ $( Version of ~ spimv and ~ spimfv with a disjoint variable condition,
527189
527189
which does not require ~ ax-13 . UPDATE: this is ~ spimvw (but
527190
527190
different proof). (Contributed by BJ, 31-May-2019.)
527191
527191
(Proof modification is discouraged.) $)
0 commit comments