Skip to content

Commit a57274c

Browse files
authored
Intuitionize the next part of the limCC section (#3261)
* Add limcres to mmil.html * Add metcnpd to iset.mm This is a deduction form of metcnp . * Add cnplimcim to iset.mm This is one direction of cnplimc from set.mm. We probably need the converse at some point, but start with the easy direction. * Add toponrestid to iset.mm Copied without change from set.mm. * Add cncfcncntop to iset.mm This is cncfcn from set.mm with the only change being the notation for the toplogy of the complex numbers. The proof is also the set.mm proof with those changes. * Add cncfcn1cntop to iset.mm This is cncfcn1 from set.mm with the notation for the topology of the complex numbers changed. The proof is the set.mm proof, changed accordingly. * Add cnlimcim to iset.mm This is one direction of cnlimc from set.mm. The proof is similar to the set.mm proof but adjusted for being an implication rather than a biconditional. * Add cnlimci to iset.mm Stated as in set.mm. The proof is slightly modified because it is in terms of cnlimcim rather than cnlimc as found in set.mm, but is basically the set.mm proof. * Add cnmptlimc to iset.mm Copied without change from set.mm. * Add cofmpt to iset.mm Copied without change from set.mm. * Add limccnpcntop to iset.mm Stated the same as limccnp in set.mm except for the notation for the topology of the complex numbers. The proof is a new proof using ellimc3ap and metcnpd .
1 parent f39f0db commit a57274c

File tree

2 files changed

+235
-0
lines changed

2 files changed

+235
-0
lines changed

iset.mm

Lines changed: 189 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -49576,6 +49576,18 @@ We use their notation ("onto" under the arrow). (Contributed by NM,
4957649576
EFCMNZGOZCFGOHIJKAICEGPMEUEPLCMEGUEMGQCUDGRCUDGSTUACUDFGUBUC $.
4957749577
$}
4957849578

49579+
${
49580+
$d x A $. $d y B $. $d x y C $. $d x y F $. $d x ph $.
49581+
cofmpt.1 $e |- ( ph -> F : C --> D ) $.
49582+
cofmpt.2 $e |- ( ( ph /\ x e. A ) -> B e. C ) $.
49583+
$( Express composition of a maps-to function with another function in a
49584+
maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.) $)
49585+
cofmpt $p |- ( ph ->
49586+
( F o. ( x e. A |-> B ) ) = ( x e. A |-> ( F ` B ) ) ) $=
49587+
( vy cv cfv cmpt eqidd feqmptd fveq2 fmptco ) ABJCEDJKZGLDGLBCDMZGIASNAJE
49588+
FGHORDGPQ $.
49589+
$}
49590+
4957949591
${
4958049592
$d x y A $. $d x y B $. $d x C $. $d x y D $. $d x E $.
4958149593
$( Express composition of two functions as a maps-to applying both in
@@ -129719,6 +129731,15 @@ _Introduction to General Topology_ (1983), p. 114) and it is convenient
129719129731
( ctopon cfv wcel ctop cuni topontop toptopon2 sylib ) ABCDEAFEAAGCDEBAHAIJ
129720129732
$.
129721129733

129734+
${
129735+
toponrestid.t $e |- A e. ( TopOn ` B ) $.
129736+
$( Given a topology on a set, restricting it to that same set has no
129737+
effect. (Contributed by Jim Kingdon, 6-Jul-2022.) $)
129738+
toponrestid $p |- A = ( A |`t B ) $=
129739+
( crest co ctopon cfv wcel wceq toponunii restid ax-mp eqcomi ) ABDEZAABF
129740+
GZHNAICAOBBACJKLM $.
129741+
$}
129742+
129722129743
${
129723129744
$d A x y $.
129724129745
$( The set of topologies on a set is included in the double power set of
@@ -135120,6 +135141,26 @@ S C_ ( P ( ball ` D ) T ) ) $=
135120135141
XFXLXGABXJQJXEXJWPUHWEWFVSWG $.
135121135142
$}
135122135143

135144+
${
135145+
$d C w y z $. $d D w y z $. $d F w y z $. $d P w y z $. $d X w y z $.
135146+
$d Y w y z $.
135147+
metcnpd.j $e |- ( ph -> J = ( MetOpen ` C ) ) $.
135148+
metcnpd.k $e |- ( ph -> K = ( MetOpen ` D ) ) $.
135149+
metcnpd.c $e |- ( ph -> C e. ( *Met ` X ) ) $.
135150+
metcnpd.d $e |- ( ph -> D e. ( *Met ` Y ) ) $.
135151+
metcnpd.p $e |- ( ph -> P e. X ) $.
135152+
$( Two ways to say a mapping from metric ` C ` to metric ` D ` is
135153+
continuous at point ` P ` . (Contributed by Jim Kingdon,
135154+
14-Jun-2023.) $)
135155+
metcnpd $p |- ( ph -> ( F e. ( ( J CnP K ) ` P ) <->
135156+
( F : X --> Y /\ A. y e. RR+ E. z e. RR+
135157+
A. w e. X ( ( P C w ) < z -> ( ( F ` P ) D ( F ` w ) ) < y ) ) ) ) $=
135158+
( co cfv wcel ccnp cmopn wf cv clt wbr wi wral crp wrex wa oveq12d fveq1d
135159+
eleq2d cxmet wb eqid metcnp syl3anc bitrd ) AHGIJUARZSZTHGEUBSZFUBSZUARZS
135160+
ZTZKLHUCGDUDZERCUDUEUFGHSVHHSFRBUDUEUFUGDKUHCUIUJBUIUHUKZAVBVFHAGVAVEAIVC
135161+
JVDUAMNULUMUNAEKUOSTFLUOSTGKTVGVIUPOPQBCDEFGHVCVDKLVCUQVDUQURUSUT $.
135162+
$}
135163+
135123135164

135124135165
$(
135125135166
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -135815,6 +135856,31 @@ S C_ ( P ( ball ` D ) T ) ) $=
135815135856
$.
135816135857
$}
135817135858

135859+
${
135860+
cncfcn.2 $e |- J = ( MetOpen ` ( abs o. - ) ) $.
135861+
cncfcn.3 $e |- K = ( J |`t A ) $.
135862+
cncfcn.4 $e |- L = ( J |`t B ) $.
135863+
$( Relate complex function continuity to topological continuity.
135864+
(Contributed by Mario Carneiro, 17-Feb-2015.) $)
135865+
cncfcncntop $p |- ( ( A C_ CC /\ B C_ CC )
135866+
-> ( A -cn-> B ) = ( K Cn L ) ) $=
135867+
( cc wss co cxp cres cmopn cfv ccn eqid crest wceq cnxmet ccncf cabs cmin
135868+
ccom cncfmet cxmet wcel simpl metrest sylancr syl5eq simpr oveq12d eqtr4d
135869+
wa ) AIJZBIJZUOZABUAKUBUCUDZAALMZNOZUSBBLMZNOZPKDEPKABUTVBVAVCUTQZVBQZVAQ
135870+
ZVCQZUEURDVAEVCPURDCARKZVAGURUSIUFOUGZUPVHVASTUPUQUHUSUTCVAIAVDFVFUIUJUKU
135871+
RECBRKZVCHURVIUQVJVCSTUPUQULUSVBCVCIBVEFVGUIUJUKUMUN $.
135872+
$}
135873+
135874+
${
135875+
cncfcn1.1 $e |- J = ( MetOpen ` ( abs o. - ) ) $.
135876+
$( Relate complex function continuity to topological continuity.
135877+
(Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro,
135878+
7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.) $)
135879+
cncfcn1cntop $p |- ( CC -cn-> CC ) = ( J Cn J ) $=
135880+
( cc wss ccncf co ccn wceq ssid cntoptopon toponrestid cncfcncntop mp2an
135881+
) CCDZNCCEFAAGFHCIZOCCAAABACABJKZPLM $.
135882+
$}
135883+
135818135884
${
135819135885
$d x w y z A $. $d x w y z S $. $d x w y z T $.
135820135886
$( A constant function is a continuous function on ` CC ` . (Contributed
@@ -136220,6 +136286,129 @@ S C_ ( P ( ball ` D ) T ) ) $=
136220136286
$.
136221136287
$}
136222136288

136289+
${
136290+
$d A d e z $. $d B d e z $. $d F d e z $. $d J d e z $. $d K d e z $.
136291+
cnplimcim.k $e |- K = ( MetOpen ` ( abs o. - ) ) $.
136292+
cnplimc.j $e |- J = ( K |`t A ) $.
136293+
$( If a function is continuous at ` B ` , its limit at ` B ` equals the
136294+
value of the function there. (Contributed by Mario Carneiro,
136295+
28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.) $)
136296+
cnplimcim $p |- ( ( A C_ CC /\ B e. A )
136297+
-> ( F e. ( ( J CnP K ) ` B ) ->
136298+
( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) $=
136299+
( vz vd ve cc wcel wa co cfv wbr cmin cabs clt crp wss wf climc ctopon wi
136300+
ccnp crest cntoptopon simpl resttopon sylancr syl5eqel 3expia sylancl imp
136301+
cnpf2 cv cap wral wrex simplr ffvelrnd ccom cxp cres simpr wb wceq simpll
136302+
cmopn cxmet cnxmet eqid metrest mpan syl5eq syl a1i xmetres2 syldan mpbid
136303+
metcnpd simprd ad3antrrr ovresd cnmetdval syl2anc abssubd biimprd adantld
136304+
sseldd 3eqtrd breq1d eqtrd biimpd imim12d ralimdva reximdva mpd ellimc3ap
136305+
mpbir2and jca ex ) AKUAZBALZMZCBDEUFNOLZAKCUBZBCOZCBUCNLZMXFXGMZXHXJXFXGX
136306+
HXFDAUDOZLZEKUDOLZXGXHUEXFDEAUGNZXLGXFXNXDXOXLLEFUHZXDXEUIAEKUJUKULXPXMXN
136307+
XGXHBCDEAKUPUMUNUOZXKXJXIKLZHUQZBURPZXSBQNROZIUQZSPZMZXSCOZXIQNROZJUQZSPZ
136308+
UEZHAUSZITUTZJTUSZXKAKBCXQXDXEXGVAZVBZXKBXSRQVCZAAVDVEZNZYBSPZXIYEYONZYGS
136309+
PZUEZHAUSZITUTZJTUSZYLXKXHUUDXKXGXHUUDMZXFXGVFXFXGXHXGUUEVGXQXFXHMZJIHYPY
136310+
OBCDEAKUUFXDDYPVJOZVHXDXEXHVIZXDDXOUUGGYOKVKOLZXDXOUUGVHVLYOYPEUUGKAYPVMF
136311+
UUGVMVNVOVPVQEYOVJOVHUUFFVRUUFUUIXDYPAVKOLVLUUHYOAKVSUKUUIUUFVLVRXDXEXHVA
136312+
ZWBVTWAWCXKUUCYKJTXKYGTLZMZUUBYJITUULYBTLZMZUUAYIHAUUNXSALZMZYDYRYTYHUUPY
136313+
CYRXTUUPYRYCUUPYQYAYBSUUPYQBXSYONZBXSQNROZYAUUPBXSYOAXKXEUUKUUMUUOYMWDUUN
136314+
UUOVFZWEUUPBKLZXSKLUUQUURVHXKUUTUUKUUMUUOXFXGXHUUTXQUUFAKBUUHUUJWKVTZWDZU
136315+
UPAKXSXKXDUUKUUMUUOXDXEXGVIZWDUUSWKZBXSYOYOVMZWFWGUUPBXSUVBUVDWHWLWMWIWJU
136316+
UPYTYHUUPYSYFYGSUUPYSXIYEQNROZYFUUPXRYEKLYSUVFVHXKXRUUKUUMUUOYNWDZUUPAKXS
136317+
CXKXHUUKUUMUUOXQWDUUSVBZXIYEYOUVEWFWGUUPXIYEUVGUVHWHWNWMWOWPWQWRWQWSXKJIH
136318+
ABXICXQUVCUVAWTXAXBXC $.
136319+
$}
136320+
136321+
${
136322+
$d x A $. $d x F $.
136323+
$( If ` F ` is a continuous function, the limit of the function at each
136324+
point equals the value of the function. (Contributed by Mario Carneiro,
136325+
28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.) $)
136326+
cnlimcim $p |- ( A C_ CC -> ( F e. ( A -cn-> CC ) ->
136327+
( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) $=
136328+
( cc wss ccncf co wcel wf cabs cmin ccom cmopn cfv crest wral eqid ctopon
136329+
cv wa ccnp climc ccn wceq cntoptopon toponrestid cncfcncntop mpan2 eleq2d
136330+
ssid wb resttopon mpan cncnp sylancl bitrd cnplimcim syl6 ralimdva anim2d
136331+
simpr sylbid ) BDEZCBDFGZHZBDCIZCASZJKLMNZBOGZVHUAGNHZABPZTZVFVGCNCVGUBGH
136332+
ZABPZTVCVECVIVHUCGZHZVLVCVDVOCVCDDEVDVOUDDUJBDVHVIVHVHQZVIQZVHDVHVQUEZUFU
136333+
GUHUIVCVIBRNHZVHDRNHZVPVLUKWAVCVTVSBVHDULUMVSACVIVHBDUNUOUPVCVKVNVFVCVJVM
136334+
ABVCVGBHTVJVFVMTVMBVGCVIVHVQVRUQVFVMVAURUSUTVB $.
136335+
$}
136336+
136337+
${
136338+
$d x A $. $d x B $. $d x F $.
136339+
cnlimci.f $e |- ( ph -> F e. ( A -cn-> D ) ) $.
136340+
cnlimci.c $e |- ( ph -> B e. A ) $.
136341+
$( If ` F ` is a continuous function, then the limit of the function at any
136342+
point equals its value. (Contributed by Mario Carneiro,
136343+
28-Dec-2016.) $)
136344+
cnlimci $p |- ( ph -> ( F ` B ) e. ( F limCC B ) ) $=
136345+
( vx cv cfv climc co wcel wceq fveq2 cc wss ccncf syl wa eleq12d cncfrss2
136346+
oveq2 wral cncfrss ssid cncfss sylancl sseldd cnlimcim imp simprd syl2anc
136347+
wf rspcdva ) AHIZEJZEUPKLZMZCEJZECKLZMHBCUPCNUQUTURVAUPCEOUPCEKUCUAABPQZE
136348+
BPRLZMZUSHBUDZAEBDRLZMZVBFBDEUESAVFVCEADPQZPPQVFVCQAVGVHFBDEUBSPUFBDPUGUH
136349+
FUIVBVDTBPEUNZVEVBVDVIVETHBEUJUKULUMGUO $.
136350+
$}
136351+
136352+
${
136353+
$d x A $. $d x B $. $d x D $. $d x Y $.
136354+
cnmptlimc.f $e |- ( ph -> ( x e. A |-> X ) e. ( A -cn-> D ) ) $.
136355+
cnmptlimc.b $e |- ( ph -> B e. A ) $.
136356+
cnmptlimc.1 $e |- ( x = B -> X = Y ) $.
136357+
$( If ` F ` is a continuous function, then the limit of the function at any
136358+
point equals its value. (Contributed by Mario Carneiro,
136359+
28-Dec-2016.) $)
136360+
cnmptlimc $p |- ( ph -> Y e. ( ( x e. A |-> X ) limCC B ) ) $=
136361+
( cmpt cfv climc co eqid wcel cv wceq eleq1d wf wral ccncf cncff syl fmpt
136362+
sylibr rspcdva fvmptd3 cnlimci eqeltrrd ) ADBCFKZLGUKDMNABDFGCUKEUKOZJIAF
136363+
EPZGEPBCDBQDRFGEJSACEUKTZUMBCUAAUKCEUBNPUNHCEUKUCUDBCEFUKULUEUFIUGUHACDEU
136364+
KHIUIUJ $.
136365+
$}
136366+
136367+
${
136368+
$d A p z $. $d B d e p z $. $d C d e p w z $. $d D d e p w z $.
136369+
$d F d e p w z $. $d G d e p w z $. $d d e p ph z $.
136370+
limccnp.f $e |- ( ph -> F : A --> D ) $.
136371+
limccnp.d $e |- ( ph -> D C_ CC ) $.
136372+
limccnpcntop.k $e |- K = ( MetOpen ` ( abs o. - ) ) $.
136373+
limccnp.j $e |- J = ( K |`t D ) $.
136374+
limccnp.c $e |- ( ph -> C e. ( F limCC B ) ) $.
136375+
limccnp.b $e |- ( ph -> G e. ( ( J CnP K ) ` C ) ) $.
136376+
$( If the limit of ` F ` at ` B ` is ` C ` and ` G ` is continuous at
136377+
` C ` , then the limit of ` G o. F ` at ` B ` is ` G ( C ) ` .
136378+
(Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon,
136379+
18-Jun-2023.) $)
136380+
limccnpcntop $p |- ( ph -> ( G ` C ) e. ( ( G o. F ) limCC B ) ) $=
136381+
( cfv co wcel cc crp vz vd ve vw vp ccom climc cv cap wbr cmin cabs wa wi
136382+
clt wral wrex ctopon ccnp crest wss cntoptopon resttopon sylancr syl5eqel
136383+
wf a1i cnpf2 syl3anc ctop cntoptop cnprcl2k ffvelrnd cxp cres cmopn cxmet
136384+
wceq cnxmet eqid metrest syl5eq xmetres2 metcnpd mpbid simprd simplr fssd
136385+
simplll cdm fdmd w3a limcrcl syl simp2d eqsstr3d simp3d ellimc3ap syl2anc
136386+
r19.21bi oveq2 breq1d fveq2 oveq2d imbi12d simpllr ad5antr rspcdva ovresd
136387+
simpr simpld sseldd cnmetdval abssubd 3eqtrd fvco3 fveq2d eqeltrd 3eqtr2d
136388+
3imtr3d imim2d ralimdva reximdva mpd rexlimdva2 fco mpbir2and ) ADGPZGFUF
136389+
ZCUGQRYHSRZUAUHZCUIUJYKCUKQULPUBUHZUOUJUMZYKYIPZYHUKQULPZUCUHZUOUJZUNZUAB
136390+
UPZUBTUQZUCTUPZAESDGAHEURPZRZISURPRZGDHIUSQPRZESGVFZAHIEUTQZUUBMAUUDESVAZ
136391+
UUGUUBRILVBZKEISVCVDVEZUUDAUUIVGODGHIESVHVIZAUUCIVJRZUUEDERZUUJUULAILVKVG
136392+
ODGHIEVLVIZVMZADUDUHZULUKUFZEEVNVOZQZUEUHZUOUJZYHUUPGPZUUQQZYPUOUJZUNZUDE
136393+
UPZUETUQZUCTUPZUUAAUUFUVHAUUEUUFUVHUMOAUCUEUDUURUUQDGHIESAHUUGUURVPPZMAUU
136394+
QSVQPRZUUHUUGUVIVRVSKUUQUURIUVISEUURVTLUVIVTWAVDWBIUUQVPPVRALVGAUVJUUHUUR
136395+
EVQPRVSKUUQESWCVDUVJAVSVGUUNWDWEWFAUVGYTUCTAYPTRZUMZUVFYTUETUVLUUTTRZUMZU
136396+
VFUMZYMYKFPZDUKQULPZUUTUOUJZUNZUABUPZUBTUQZYTUVOAUVMUWAAUVKUVMUVFWIUVLUVM
136397+
UVFWGAUWAUETADSRZUWAUETUPZADFCUGQRZUWBUWCUMNAUEUBUABCDFABESFJKWHABFWJZSAB
136398+
EFJWKAUWESFVFZUWESVAZCSRZAUWDUWFUWGUWHWLNCDFWMWNZWOWPZAUWFUWGUWHUWIWQZWRW
136399+
EZWFWTWSUVOUVTYSUBTUVOYLTRZUMZUVSYRUABUWNYKBRZUMZUVRYQYMUWPDUVPUURQZUUTUO
136400+
UJZYHUVPGPZUUQQZYPUOUJZUVRYQUWPUVEUWRUXAUNUDEUVPUUPUVPVRZUVAUWRUVDUXAUXBU
136401+
USUWQUUTUOUUPUVPDUURXAXBUXBUVCUWTYPUOUXBUVBUWSYHUUQUUPUVPGXCXDXBXEUVNUVFU
136402+
WMUWOXFUWPBEYKFABEFVFZUVKUVMUVFUWMUWOJXGZUWNUWOXJZVMZXHUWPUWQUVQUUTUOUWPU
136403+
WQDUVPUUQQZDUVPUKQULPZUVQUWPDUVPUUQEAUUMUVKUVMUVFUWMUWOUUNXGUXFXIUWPUWBUV
136404+
PSRUXGUXHVRAUWBUVKUVMUVFUWMUWOAUWBUWCUWLXKXGZUWPESUVPAUUHUVKUVMUVFUWMUWOK
136405+
XGUXFXLZDUVPUUQUUQVTZXMWSUWPDUVPUXIUXJXNXOXBUWPUWTYOYPUOUWPUWTYHUWSUKQZUL
136406+
PZYHYNUKQZULPYOUWPYJUWSSRUWTUXMVRAYJUVKUVMUVFUWMUWOUUOXGZUWPESUVPGAUUFUVK
136407+
UVMUVFUWMUWOUUKXGUXFVMZYHUWSUUQUXKXMWSUWPUXNUXLULUWPYNUWSYHUKUWPUXCUWOYNU
136408+
WSVRUXDUXEBEYKGFXPWSZXDXQUWPYHYNUXOUWPYNUWSSUXQUXPXRXNXSXBXTYAYBYCYDYEYBY
136409+
DAUCUBUABCYHYIAUUFUXCBSYIVFUUKJBESGFYFWSUWJUWKWRYG $.
136410+
$}
136411+
136223136412

136224136413
$(
136225136414
###############################################################################

mmil.raw.html

Lines changed: 46 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10106,6 +10106,16 @@
1010610106
<TD>~ divccncfap</TD>
1010710107
</TR>
1010810108

10109+
<tr>
10110+
<td>cncfcn</td>
10111+
<td>~ cncfcncntop</td>
10112+
</tr>
10113+
10114+
<tr>
10115+
<td>cncfcn1</td>
10116+
<td>~ cncfcn1cntop</td>
10117+
</tr>
10118+
1010910119
<tr>
1011010120
<td>cdivcncf</td>
1011110121
<td>~ cdivcncfap</td>
@@ -10149,6 +10159,42 @@
1014910159
<td><i>none</i></td>
1015010160
</tr>
1015110161

10162+
<tr>
10163+
<td>limcres</td>
10164+
<td><i>none</i></td>
10165+
<td>Although this would appear to be provable,
10166+
it might benefit from some additional theorems which
10167+
help us manipulate ` |``t ` and metric spaces.
10168+
If iset.mm doesn't have CCfld yet, use
10169+
` ( MetOpen `` ( abs o. - ) ) ` for the topology of the
10170+
complex numbers (see cnfldtopn in set.mm).
10171+
Proof sketch: because interiors are open, we can form
10172+
a ball around ` B ` which is contained in
10173+
` ( ( int `` J ) `` ( C u. { B } ) ) ` which gives
10174+
us the delta we need to apply ~ ellimc3ap for
10175+
` ( F limCC B ) ` (given that we can apply
10176+
~ ellimc3ap for ` ( ( F |`` C ) limCC B ) ` when
10177+
working within ` C ` ).</td>
10178+
</tr>
10179+
10180+
<tr>
10181+
<td>cnplimc</td>
10182+
<td>~ cnplimcim</td>
10183+
<td>The converse is conjectured to also be provable, but
10184+
would require a more involved proof.</td>
10185+
</tr>
10186+
10187+
<tr>
10188+
<td>cnlimc</td>
10189+
<td>~ cnlimcim</td>
10190+
<td>See cnplimc concerning biconditionalizing this</td>
10191+
</tr>
10192+
10193+
<tr>
10194+
<td>limccnp</td>
10195+
<td>~ limccnpcntop</td>
10196+
</tr>
10197+
1015210198
</TABLE>
1015310199

1015410200
<HR NOSHADE SIZE=1><A NAME="bib"></A><B><FONT

0 commit comments

Comments
 (0)