@@ -49576,6 +49576,18 @@ We use their notation ("onto" under the arrow). (Contributed by NM,
49576
49576
EFCMNZGOZCFGOHIJKAICEGPMEUEPLCMEGUEMGQCUDGRCUDGSTUACUDFGUBUC $.
49577
49577
$}
49578
49578
49579
+ ${
49580
+ $d x A $. $d y B $. $d x y C $. $d x y F $. $d x ph $.
49581
+ cofmpt.1 $e |- ( ph -> F : C --> D ) $.
49582
+ cofmpt.2 $e |- ( ( ph /\ x e. A ) -> B e. C ) $.
49583
+ $( Express composition of a maps-to function with another function in a
49584
+ maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.) $)
49585
+ cofmpt $p |- ( ph ->
49586
+ ( F o. ( x e. A |-> B ) ) = ( x e. A |-> ( F ` B ) ) ) $=
49587
+ ( vy cv cfv cmpt eqidd feqmptd fveq2 fmptco ) ABJCEDJKZGLDGLBCDMZGIASNAJE
49588
+ FGHORDGPQ $.
49589
+ $}
49590
+
49579
49591
${
49580
49592
$d x y A $. $d x y B $. $d x C $. $d x y D $. $d x E $.
49581
49593
$( Express composition of two functions as a maps-to applying both in
@@ -129719,6 +129731,15 @@ _Introduction to General Topology_ (1983), p. 114) and it is convenient
129719
129731
( ctopon cfv wcel ctop cuni topontop toptopon2 sylib ) ABCDEAFEAAGCDEBAHAIJ
129720
129732
$.
129721
129733
129734
+ ${
129735
+ toponrestid.t $e |- A e. ( TopOn ` B ) $.
129736
+ $( Given a topology on a set, restricting it to that same set has no
129737
+ effect. (Contributed by Jim Kingdon, 6-Jul-2022.) $)
129738
+ toponrestid $p |- A = ( A |`t B ) $=
129739
+ ( crest co ctopon cfv wcel wceq toponunii restid ax-mp eqcomi ) ABDEZAABF
129740
+ GZHNAICAOBBACJKLM $.
129741
+ $}
129742
+
129722
129743
${
129723
129744
$d A x y $.
129724
129745
$( The set of topologies on a set is included in the double power set of
@@ -135120,6 +135141,26 @@ S C_ ( P ( ball ` D ) T ) ) $=
135120
135141
XFXLXGABXJQJXEXJWPUHWEWFVSWG $.
135121
135142
$}
135122
135143
135144
+ ${
135145
+ $d C w y z $. $d D w y z $. $d F w y z $. $d P w y z $. $d X w y z $.
135146
+ $d Y w y z $.
135147
+ metcnpd.j $e |- ( ph -> J = ( MetOpen ` C ) ) $.
135148
+ metcnpd.k $e |- ( ph -> K = ( MetOpen ` D ) ) $.
135149
+ metcnpd.c $e |- ( ph -> C e. ( *Met ` X ) ) $.
135150
+ metcnpd.d $e |- ( ph -> D e. ( *Met ` Y ) ) $.
135151
+ metcnpd.p $e |- ( ph -> P e. X ) $.
135152
+ $( Two ways to say a mapping from metric ` C ` to metric ` D ` is
135153
+ continuous at point ` P ` . (Contributed by Jim Kingdon,
135154
+ 14-Jun-2023.) $)
135155
+ metcnpd $p |- ( ph -> ( F e. ( ( J CnP K ) ` P ) <->
135156
+ ( F : X --> Y /\ A. y e. RR+ E. z e. RR+
135157
+ A. w e. X ( ( P C w ) < z -> ( ( F ` P ) D ( F ` w ) ) < y ) ) ) ) $=
135158
+ ( co cfv wcel ccnp cmopn wf cv clt wbr wi wral crp wrex wa oveq12d fveq1d
135159
+ eleq2d cxmet wb eqid metcnp syl3anc bitrd ) AHGIJUARZSZTHGEUBSZFUBSZUARZS
135160
+ ZTZKLHUCGDUDZERCUDUEUFGHSVHHSFRBUDUEUFUGDKUHCUIUJBUIUHUKZAVBVFHAGVAVEAIVC
135161
+ JVDUAMNULUMUNAEKUOSTFLUOSTGKTVGVIUPOPQBCDEFGHVCVDKLVCUQVDUQURUSUT $.
135162
+ $}
135163
+
135123
135164
135124
135165
$(
135125
135166
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -135815,6 +135856,31 @@ S C_ ( P ( ball ` D ) T ) ) $=
135815
135856
$.
135816
135857
$}
135817
135858
135859
+ ${
135860
+ cncfcn.2 $e |- J = ( MetOpen ` ( abs o. - ) ) $.
135861
+ cncfcn.3 $e |- K = ( J |`t A ) $.
135862
+ cncfcn.4 $e |- L = ( J |`t B ) $.
135863
+ $( Relate complex function continuity to topological continuity.
135864
+ (Contributed by Mario Carneiro, 17-Feb-2015.) $)
135865
+ cncfcncntop $p |- ( ( A C_ CC /\ B C_ CC )
135866
+ -> ( A -cn-> B ) = ( K Cn L ) ) $=
135867
+ ( cc wss co cxp cres cmopn cfv ccn eqid crest wceq cnxmet ccncf cabs cmin
135868
+ ccom cncfmet cxmet wcel simpl metrest sylancr syl5eq simpr oveq12d eqtr4d
135869
+ wa ) AIJZBIJZUOZABUAKUBUCUDZAALMZNOZUSBBLMZNOZPKDEPKABUTVBVAVCUTQZVBQZVAQ
135870
+ ZVCQZUEURDVAEVCPURDCARKZVAGURUSIUFOUGZUPVHVASTUPUQUHUSUTCVAIAVDFVFUIUJUKU
135871
+ RECBRKZVCHURVIUQVJVCSTUPUQULUSVBCVCIBVEFVGUIUJUKUMUN $.
135872
+ $}
135873
+
135874
+ ${
135875
+ cncfcn1.1 $e |- J = ( MetOpen ` ( abs o. - ) ) $.
135876
+ $( Relate complex function continuity to topological continuity.
135877
+ (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro,
135878
+ 7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.) $)
135879
+ cncfcn1cntop $p |- ( CC -cn-> CC ) = ( J Cn J ) $=
135880
+ ( cc wss ccncf co ccn wceq ssid cntoptopon toponrestid cncfcncntop mp2an
135881
+ ) CCDZNCCEFAAGFHCIZOCCAAABACABJKZPLM $.
135882
+ $}
135883
+
135818
135884
${
135819
135885
$d x w y z A $. $d x w y z S $. $d x w y z T $.
135820
135886
$( A constant function is a continuous function on ` CC ` . (Contributed
@@ -136220,6 +136286,129 @@ S C_ ( P ( ball ` D ) T ) ) $=
136220
136286
$.
136221
136287
$}
136222
136288
136289
+ ${
136290
+ $d A d e z $. $d B d e z $. $d F d e z $. $d J d e z $. $d K d e z $.
136291
+ cnplimcim.k $e |- K = ( MetOpen ` ( abs o. - ) ) $.
136292
+ cnplimc.j $e |- J = ( K |`t A ) $.
136293
+ $( If a function is continuous at ` B ` , its limit at ` B ` equals the
136294
+ value of the function there. (Contributed by Mario Carneiro,
136295
+ 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.) $)
136296
+ cnplimcim $p |- ( ( A C_ CC /\ B e. A )
136297
+ -> ( F e. ( ( J CnP K ) ` B ) ->
136298
+ ( F : A --> CC /\ ( F ` B ) e. ( F limCC B ) ) ) ) $=
136299
+ ( vz vd ve cc wcel wa co cfv wbr cmin cabs clt crp wss wf climc ctopon wi
136300
+ ccnp crest cntoptopon simpl resttopon sylancr syl5eqel 3expia sylancl imp
136301
+ cnpf2 cv cap wral wrex simplr ffvelrnd ccom cxp cres simpr wb wceq simpll
136302
+ cmopn cxmet cnxmet eqid metrest mpan syl5eq syl a1i xmetres2 syldan mpbid
136303
+ metcnpd simprd ad3antrrr ovresd cnmetdval syl2anc abssubd biimprd adantld
136304
+ sseldd 3eqtrd breq1d eqtrd biimpd imim12d ralimdva reximdva mpd ellimc3ap
136305
+ mpbir2and jca ex ) AKUAZBALZMZCBDEUFNOLZAKCUBZBCOZCBUCNLZMXFXGMZXHXJXFXGX
136306
+ HXFDAUDOZLZEKUDOLZXGXHUEXFDEAUGNZXLGXFXNXDXOXLLEFUHZXDXEUIAEKUJUKULXPXMXN
136307
+ XGXHBCDEAKUPUMUNUOZXKXJXIKLZHUQZBURPZXSBQNROZIUQZSPZMZXSCOZXIQNROZJUQZSPZ
136308
+ UEZHAUSZITUTZJTUSZXKAKBCXQXDXEXGVAZVBZXKBXSRQVCZAAVDVEZNZYBSPZXIYEYONZYGS
136309
+ PZUEZHAUSZITUTZJTUSZYLXKXHUUDXKXGXHUUDMZXFXGVFXFXGXHXGUUEVGXQXFXHMZJIHYPY
136310
+ OBCDEAKUUFXDDYPVJOZVHXDXEXHVIZXDDXOUUGGYOKVKOLZXDXOUUGVHVLYOYPEUUGKAYPVMF
136311
+ UUGVMVNVOVPVQEYOVJOVHUUFFVRUUFUUIXDYPAVKOLVLUUHYOAKVSUKUUIUUFVLVRXDXEXHVA
136312
+ ZWBVTWAWCXKUUCYKJTXKYGTLZMZUUBYJITUULYBTLZMZUUAYIHAUUNXSALZMZYDYRYTYHUUPY
136313
+ CYRXTUUPYRYCUUPYQYAYBSUUPYQBXSYONZBXSQNROZYAUUPBXSYOAXKXEUUKUUMUUOYMWDUUN
136314
+ UUOVFZWEUUPBKLZXSKLUUQUURVHXKUUTUUKUUMUUOXFXGXHUUTXQUUFAKBUUHUUJWKVTZWDZU
136315
+ UPAKXSXKXDUUKUUMUUOXDXEXGVIZWDUUSWKZBXSYOYOVMZWFWGUUPBXSUVBUVDWHWLWMWIWJU
136316
+ UPYTYHUUPYSYFYGSUUPYSXIYEQNROZYFUUPXRYEKLYSUVFVHXKXRUUKUUMUUOYNWDZUUPAKXS
136317
+ CXKXHUUKUUMUUOXQWDUUSVBZXIYEYOUVEWFWGUUPXIYEUVGUVHWHWNWMWOWPWQWRWQWSXKJIH
136318
+ ABXICXQUVCUVAWTXAXBXC $.
136319
+ $}
136320
+
136321
+ ${
136322
+ $d x A $. $d x F $.
136323
+ $( If ` F ` is a continuous function, the limit of the function at each
136324
+ point equals the value of the function. (Contributed by Mario Carneiro,
136325
+ 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.) $)
136326
+ cnlimcim $p |- ( A C_ CC -> ( F e. ( A -cn-> CC ) ->
136327
+ ( F : A --> CC /\ A. x e. A ( F ` x ) e. ( F limCC x ) ) ) ) $=
136328
+ ( cc wss ccncf co wcel wf cabs cmin ccom cmopn cfv crest wral eqid ctopon
136329
+ cv wa ccnp climc ccn wceq cntoptopon toponrestid cncfcncntop mpan2 eleq2d
136330
+ ssid wb resttopon mpan cncnp sylancl bitrd cnplimcim syl6 ralimdva anim2d
136331
+ simpr sylbid ) BDEZCBDFGZHZBDCIZCASZJKLMNZBOGZVHUAGNHZABPZTZVFVGCNCVGUBGH
136332
+ ZABPZTVCVECVIVHUCGZHZVLVCVDVOCVCDDEVDVOUDDUJBDVHVIVHVHQZVIQZVHDVHVQUEZUFU
136333
+ GUHUIVCVIBRNHZVHDRNHZVPVLUKWAVCVTVSBVHDULUMVSACVIVHBDUNUOUPVCVKVNVFVCVJVM
136334
+ ABVCVGBHTVJVFVMTVMBVGCVIVHVQVRUQVFVMVAURUSUTVB $.
136335
+ $}
136336
+
136337
+ ${
136338
+ $d x A $. $d x B $. $d x F $.
136339
+ cnlimci.f $e |- ( ph -> F e. ( A -cn-> D ) ) $.
136340
+ cnlimci.c $e |- ( ph -> B e. A ) $.
136341
+ $( If ` F ` is a continuous function, then the limit of the function at any
136342
+ point equals its value. (Contributed by Mario Carneiro,
136343
+ 28-Dec-2016.) $)
136344
+ cnlimci $p |- ( ph -> ( F ` B ) e. ( F limCC B ) ) $=
136345
+ ( vx cv cfv climc co wcel wceq fveq2 cc wss ccncf syl wa eleq12d cncfrss2
136346
+ oveq2 wral cncfrss ssid cncfss sylancl sseldd cnlimcim imp simprd syl2anc
136347
+ wf rspcdva ) AHIZEJZEUPKLZMZCEJZECKLZMHBCUPCNUQUTURVAUPCEOUPCEKUCUAABPQZE
136348
+ BPRLZMZUSHBUDZAEBDRLZMZVBFBDEUESAVFVCEADPQZPPQVFVCQAVGVHFBDEUBSPUFBDPUGUH
136349
+ FUIVBVDTBPEUNZVEVBVDVIVETHBEUJUKULUMGUO $.
136350
+ $}
136351
+
136352
+ ${
136353
+ $d x A $. $d x B $. $d x D $. $d x Y $.
136354
+ cnmptlimc.f $e |- ( ph -> ( x e. A |-> X ) e. ( A -cn-> D ) ) $.
136355
+ cnmptlimc.b $e |- ( ph -> B e. A ) $.
136356
+ cnmptlimc.1 $e |- ( x = B -> X = Y ) $.
136357
+ $( If ` F ` is a continuous function, then the limit of the function at any
136358
+ point equals its value. (Contributed by Mario Carneiro,
136359
+ 28-Dec-2016.) $)
136360
+ cnmptlimc $p |- ( ph -> Y e. ( ( x e. A |-> X ) limCC B ) ) $=
136361
+ ( cmpt cfv climc co eqid wcel cv wceq eleq1d wf wral ccncf cncff syl fmpt
136362
+ sylibr rspcdva fvmptd3 cnlimci eqeltrrd ) ADBCFKZLGUKDMNABDFGCUKEUKOZJIAF
136363
+ EPZGEPBCDBQDRFGEJSACEUKTZUMBCUAAUKCEUBNPUNHCEUKUCUDBCEFUKULUEUFIUGUHACDEU
136364
+ KHIUIUJ $.
136365
+ $}
136366
+
136367
+ ${
136368
+ $d A p z $. $d B d e p z $. $d C d e p w z $. $d D d e p w z $.
136369
+ $d F d e p w z $. $d G d e p w z $. $d d e p ph z $.
136370
+ limccnp.f $e |- ( ph -> F : A --> D ) $.
136371
+ limccnp.d $e |- ( ph -> D C_ CC ) $.
136372
+ limccnpcntop.k $e |- K = ( MetOpen ` ( abs o. - ) ) $.
136373
+ limccnp.j $e |- J = ( K |`t D ) $.
136374
+ limccnp.c $e |- ( ph -> C e. ( F limCC B ) ) $.
136375
+ limccnp.b $e |- ( ph -> G e. ( ( J CnP K ) ` C ) ) $.
136376
+ $( If the limit of ` F ` at ` B ` is ` C ` and ` G ` is continuous at
136377
+ ` C ` , then the limit of ` G o. F ` at ` B ` is ` G ( C ) ` .
136378
+ (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon,
136379
+ 18-Jun-2023.) $)
136380
+ limccnpcntop $p |- ( ph -> ( G ` C ) e. ( ( G o. F ) limCC B ) ) $=
136381
+ ( cfv co wcel cc crp vz vd ve vw vp ccom climc cv cap wbr cmin cabs wa wi
136382
+ clt wral wrex ctopon ccnp crest wss cntoptopon resttopon sylancr syl5eqel
136383
+ wf a1i cnpf2 syl3anc ctop cntoptop cnprcl2k ffvelrnd cxp cres cmopn cxmet
136384
+ wceq cnxmet eqid metrest syl5eq xmetres2 metcnpd mpbid simprd simplr fssd
136385
+ simplll cdm fdmd w3a limcrcl syl simp2d eqsstr3d simp3d ellimc3ap syl2anc
136386
+ r19.21bi oveq2 breq1d fveq2 oveq2d imbi12d simpllr ad5antr rspcdva ovresd
136387
+ simpr simpld sseldd cnmetdval abssubd 3eqtrd fvco3 fveq2d eqeltrd 3eqtr2d
136388
+ 3imtr3d imim2d ralimdva reximdva mpd rexlimdva2 fco mpbir2and ) ADGPZGFUF
136389
+ ZCUGQRYHSRZUAUHZCUIUJYKCUKQULPUBUHZUOUJUMZYKYIPZYHUKQULPZUCUHZUOUJZUNZUAB
136390
+ UPZUBTUQZUCTUPZAESDGAHEURPZRZISURPRZGDHIUSQPRZESGVFZAHIEUTQZUUBMAUUDESVAZ
136391
+ UUGUUBRILVBZKEISVCVDVEZUUDAUUIVGODGHIESVHVIZAUUCIVJRZUUEDERZUUJUULAILVKVG
136392
+ ODGHIEVLVIZVMZADUDUHZULUKUFZEEVNVOZQZUEUHZUOUJZYHUUPGPZUUQQZYPUOUJZUNZUDE
136393
+ UPZUETUQZUCTUPZUUAAUUFUVHAUUEUUFUVHUMOAUCUEUDUURUUQDGHIESAHUUGUURVPPZMAUU
136394
+ QSVQPRZUUHUUGUVIVRVSKUUQUURIUVISEUURVTLUVIVTWAVDWBIUUQVPPVRALVGAUVJUUHUUR
136395
+ EVQPRVSKUUQESWCVDUVJAVSVGUUNWDWEWFAUVGYTUCTAYPTRZUMZUVFYTUETUVLUUTTRZUMZU
136396
+ VFUMZYMYKFPZDUKQULPZUUTUOUJZUNZUABUPZUBTUQZYTUVOAUVMUWAAUVKUVMUVFWIUVLUVM
136397
+ UVFWGAUWAUETADSRZUWAUETUPZADFCUGQRZUWBUWCUMNAUEUBUABCDFABESFJKWHABFWJZSAB
136398
+ EFJWKAUWESFVFZUWESVAZCSRZAUWDUWFUWGUWHWLNCDFWMWNZWOWPZAUWFUWGUWHUWIWQZWRW
136399
+ EZWFWTWSUVOUVTYSUBTUVOYLTRZUMZUVSYRUABUWNYKBRZUMZUVRYQYMUWPDUVPUURQZUUTUO
136400
+ UJZYHUVPGPZUUQQZYPUOUJZUVRYQUWPUVEUWRUXAUNUDEUVPUUPUVPVRZUVAUWRUVDUXAUXBU
136401
+ USUWQUUTUOUUPUVPDUURXAXBUXBUVCUWTYPUOUXBUVBUWSYHUUQUUPUVPGXCXDXBXEUVNUVFU
136402
+ WMUWOXFUWPBEYKFABEFVFZUVKUVMUVFUWMUWOJXGZUWNUWOXJZVMZXHUWPUWQUVQUUTUOUWPU
136403
+ WQDUVPUUQQZDUVPUKQULPZUVQUWPDUVPUUQEAUUMUVKUVMUVFUWMUWOUUNXGUXFXIUWPUWBUV
136404
+ PSRUXGUXHVRAUWBUVKUVMUVFUWMUWOAUWBUWCUWLXKXGZUWPESUVPAUUHUVKUVMUVFUWMUWOK
136405
+ XGUXFXLZDUVPUUQUUQVTZXMWSUWPDUVPUXIUXJXNXOXBUWPUWTYOYPUOUWPUWTYHUWSUKQZUL
136406
+ PZYHYNUKQZULPYOUWPYJUWSSRUWTUXMVRAYJUVKUVMUVFUWMUWOUUOXGZUWPESUVPGAUUFUVK
136407
+ UVMUVFUWMUWOUUKXGUXFVMZYHUWSUUQUXKXMWSUWPUXNUXLULUWPYNUWSYHUKUWPUXCUWOYNU
136408
+ WSVRUXDUXEBEYKGFXPWSZXDXQUWPYHYNUXOUWPYNUWSSUXQUXPXRXNXSXBXTYAYBYCYDYEYBY
136409
+ DAUCUBUABCYHYIAUUFUXCBSYIVFUUKJBESGFYFWSUWJUWKWRYG $.
136410
+ $}
136411
+
136223
136412
136224
136413
$(
136225
136414
###############################################################################
0 commit comments