Skip to content

Commit e13c374

Browse files
authored
(real) antiderivative of 1/x (#5034)
1 parent 2d515a2 commit e13c374

File tree

2 files changed

+182
-8
lines changed

2 files changed

+182
-8
lines changed

changes-set.txt

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -92,6 +92,7 @@ make a github issue.)
9292

9393
DONE:
9494
Date Old New Notes
95+
1-Oct-25 inindif [same] Moved from TA's mathbox to main set.mm
9596
23-Sep-25 coecj [same] Removed unneeded hypothesis
9697
23-Sep-25 plycj [same] Removed unneeded hypothesis
9798
23-Sep-25 elfzolem1 [same] moved from GS's mathbox to main set.mm

set.mm

Lines changed: 181 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -41524,6 +41524,14 @@ among classes ( ~ eq0 , as opposed to the weaker uniqueness among sets,
4152441524
UGUH $.
4152541525
$}
4152641526

41527+
$( The intersection and class difference of a class with another class are
41528+
disjoint. With ~ inundif , this shows that such intersection and class
41529+
difference partition the class ` A ` . (Contributed by Thierry Arnoux,
41530+
13-Sep-2017.) $)
41531+
inindif $p |- ( ( A i^i C ) i^i ( A \ C ) ) = (/) $=
41532+
( cin wss cdif c0 wceq inss2 ssinss1 ax-mp inssdif0 mpbi ) ABCZACBDZMABECFG
41533+
MBDNABHMABIJMABKL $.
41534+
4152741535
${
4152841536
$d A x $.
4152941537
$( The difference between a class and itself is the empty set. Proposition
@@ -502773,11 +502781,6 @@ Class abstractions (a.k.a. class builders)
502773502781
inin $p |- ( A i^i ( A i^i B ) ) = ( A i^i B ) $=
502774502782
( cin in13 inidm ineq2i incom 3eqtri ) AABCZCBAACZCBACIAABDJABAEFBAGH $.
502775502783

502776-
$( See ~ inundif . (Contributed by Thierry Arnoux, 13-Sep-2017.) $)
502777-
inindif $p |- ( ( A i^i C ) i^i ( A \ C ) ) = (/) $=
502778-
( cin wss cdif c0 wceq wo inss2 orci inss ax-mp inssdif0 mpbi ) ABCZACBDZOA
502779-
BECFGOBDZABDZHPQRABIJOABKLOABMN $.
502780-
502781502784
$( Condition for the intersections of two sets with a given set to be equal.
502782502785
(Contributed by Thierry Arnoux, 28-Dec-2021.) $)
502783502786
difininv $p |- ( ( ( ( A \ C ) i^i B ) = (/) /\ ( ( C \ A ) i^i B ) = (/) )
@@ -697256,6 +697259,11 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
697256697259
( c9 c2 cexp co cmul c8 c1 cdc 9cn sqvali 9t9e81 eqtri ) ABCDAAEDFGHAIJKL
697257697260
$.
697258697261

697262+
$( The positive reals are a subset of the complex numbers. (Contributed by
697263+
SN, 1-Oct-2025.) $)
697264+
rpsscn $p |- RR+ C_ CC $=
697265+
( crp cr cc rpssre ax-resscn sstri ) ABCDEF $.
697266+
697259697267
$( 4 is a positive real. (Contributed by SN, 26-Aug-2025.) $)
697260697268
4rp $p |- 4 e. RR+ $=
697261697269
( c4 4re 4pos elrpii ) ABCD $.
@@ -697484,6 +697492,26 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
697484697492
( cr wcel ci cmul co cc0 wceq recn ax-icn a1i mulcomd eleq1d itrere bitrd
697485697493
cc ) ABCZADEFZBCDAEFZBCAGHQRSBQADAIDPCQJKLMANO $.
697486697494

697495+
${
697496+
$d A w x y z $. $d B w x y z $. $d C w x y z $.
697497+
ixxdisjd.a $e |- ( ph -> A e. RR* ) $.
697498+
ixxdisjd.b $e |- ( ph -> B e. RR* ) $.
697499+
ixxdisjd.c $e |- ( ph -> C e. RR* ) $.
697500+
$( Adjacent intervals where the lower interval is right-closed and the
697501+
upper interval is open are disjoint. (Contributed by SN,
697502+
1-Oct-2025.) $)
697503+
iocioodisjd $p |- ( ph -> ( ( A (,] B ) i^i ( B (,) C ) ) = (/) ) $=
697504+
( vx vy vz vw cxr wcel cioc co cioo cin c0 wceq clt df-ioc df-ioo xrltnle
697505+
cle cv ixxdisj syl3anc ) ABLMCLMDLMBCNOCDPOQRSEFGHIJKBCDPTUDTTNHIJUAHIJUB
697506+
CKUEUCUFUG $.
697507+
$}
697508+
697509+
$( A positive real is its own absolute value. (Contributed by SN,
697510+
1-Oct-2025.) $)
697511+
rpabsid $p |- ( R e. RR+ -> ( abs ` R ) = R ) $=
697512+
( crp wcel cr cc0 cle wbr cabs cfv wceq rpre rpge0 absid syl2anc ) ABCADCEA
697513+
FGAHIAJAKALAMN $.
697514+
697487697515

697488697516
$(
697489697517
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -697895,7 +697923,7 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
697895697923

697896697924
$(
697897697925
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
697898-
Trigonometry
697926+
Trigonometry and Calculus
697899697927
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
697900697928
$)
697901697929

@@ -697946,6 +697974,152 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
697946697974
VLVQVLULJVPVLIVRVLUMUNVLVQJZVLNJZKVLORZVLAORZVLVRPABLMQSUOWBAACDZBORWCGBOAU
697947697975
PALQUQURUSUTABALMLSQVAVCKNJANJVSVTWAWBVDVEVFALPKAVLVGTVHVIVLVJTVK $.
697948697976

697977+
${
697978+
dvun.j $e |- J = ( K |`t S ) $.
697979+
dvun.k $e |- K = ( TopOpen ` CCfld ) $.
697980+
dvun.s $e |- ( ph -> S C_ CC ) $.
697981+
dvun.f $e |- ( ph -> F : A --> CC ) $.
697982+
dvun.g $e |- ( ph -> G : B --> CC ) $.
697983+
dvun.a $e |- ( ph -> A C_ S ) $.
697984+
dvun.b $e |- ( ph -> B C_ S ) $.
697985+
dvun.d $e |- ( ph -> ( A i^i B ) = (/) ) $.
697986+
dvun.n $e |- ( ph -> ( ( ( int ` J ) ` A ) u. ( ( int ` J ) ` B ) )
697987+
= ( ( int ` J ) ` ( A u. B ) ) ) $.
697988+
$( Condition for the union of the derivatives of two disjoint functions to
697989+
be equal to the derivative of the union of the two functions. If ` A `
697990+
and ` B ` are open sets, this condition (dvun.n) is satisfied by
697991+
~ isopn3i . (Contributed by SN, 30-Sep-2025.) $)
697992+
dvun $p |- ( ph -> ( ( S _D F ) u. ( S _D G ) ) = ( S _D ( F u. G ) ) ) $=
697993+
( cdv cres wceq cun co cnt cfv resundi reseq2d eqtr3id cc wss fun2d unssd
697994+
wf dvres syl22anc wfn cin c0 ffnd fnunres1 syl3anc oveq2d eqtr3d fnunres2
697995+
uneq12d fnresdm syl 3eqtr3d ) ADEFUAZRUBZBGUCUDZUDZSZVICVJUDZSZUAZVIBCUAZ
697996+
VJUDZSZDERUBZDFRUBZUAVIAVOVIVKVMUAZSVRVIVKVMUEAWAVQVIQUFUGAVLVSVNVTADVHBS
697997+
ZRUBZVLVSADUHUIZVPUHVHULZVPDUIZBDUIWCVLTKABCUHEFLMPUJZABCDNOUKZNVPBDGVHHJ
697998+
IUMUNAWBEDRAEBUOZFCUOZBCUPUQTZWBETABUHELURZACUHFMURZPBCEFUSUTVAVBADVHCSZR
697999+
UBZVNVTAWDWEWFCDUIWOVNTKWGWHOVPCDGVHHJIUMUNAWNFDRAWIWJWKWNFTWLWMPBCEFVCUT
698000+
VAVBVDADVHVPSZRUBZVRVIAWDWEWFWFWQVRTKWGWHWHVPVPDGVHHJIUMUNAWPVHDRAVHVPUOW
698001+
PVHTAVPUHVHWGURVPVHVEVFVAVBVG $.
698002+
$}
698003+
698004+
$( A good example of ~ dvmptco is ~ dvsinexp . $)
698005+
698006+
${
698007+
$d x y $. $d D x $.
698008+
redvabs.d $e |- D = ( RR \ { 0 } ) $.
698009+
$( The derivative of the absolute value, for real numbers. (Contributed by
698010+
SN, 30-Sep-2025.) $)
698011+
redvmptabs $p |- ( RR _D ( x e. D |-> ( abs ` x ) ) ) =
698012+
( x e. D |-> if ( x < 0 , -u 1 , 1 ) ) $=
698013+
( cr cc0 clt cmpt cun cdv co wcel c1 cfv wceq wtru cc a1i wa wss wn vy cv
698014+
wbr cab cin cneg cdif cif cabs partfun cpr reelprrecn inss1 difss eqsstri
698015+
csn ax-resscn sstri sseli adantl 1cnd crn ctg ccnfld ctopn sselda dvmptid
698016+
cioo 1red ssinss1 mp1i eqid tgioo2 cmnf wne eleq2i eldifsn bitri vex elab
698017+
breq1 anbi12i lt0ne0 expcom pm4.71d bicomd pm5.32ri elin cxr 0xr elioomnf
698018+
wb ax-mp 3bitr4i eqriv iooretop eqeltri dvmptres dvmptneg ssdifssd notbii
698019+
mptru cpnf anass wo elre0re id lttrid ioran bicomi bianbi bitr2di pm5.32i
698020+
nesym 3bitri eldif repos uneq12i negcld fmpttd ssdifss inindif ctop retop
698021+
c0 cnt isopn3i mp2an unopn mp3an eqtr4i dvun 3eqtr2ri elioore 0red eqcomd
698022+
simprbi eleq2s sylbir crp absnidd rpabsid ifeqda mpteq2ia eqtr3i ifbieq2i
698023+
ltled ioorp oveq2i mpteq2i 3eqtr3i ) DABUAUBZEFUCZUAUDZUEZAUBZUFZGZABUUNU
698024+
GZUUPGZHZIJZABUUPUUNKZLUFZLUHZGZDABUUPUIMZGZIJABUUPEFUCZUVDLUHZGUVFAUUOUV
698025+
DGZAUUSLGZHDUURIJZDUUTIJZHZUVBABUUNUVDLUJUVMUVKUVNUVLUVMUVKNOAUUPLDPUUODD
698026+
PUKKOULQZUUPUUOKZUUPPKOUUOPUUPUUOBPBUUNUMBDPBDEUPZUGZDCDUVRUNUOZUQURURUSU
698027+
TZOUVQRZVAOAUUPLDVHVBVCMZVDVEMZDDUUOUVPODPUUPDPSOUQQZVFZOUUPDKZRVIZOADUVP
698028+
VGZBDSZUUODSOUVTBUUNDVJVKZUWDUWDVLZVMZUWLUUOUWCKZOUUOVNEVHJZUWCAUUOUWOUUP
698029+
BKZUVCRZUWGUVIRZUVQUUPUWOKZUWQUWGUUPEVOZRZUVIRUWRUWPUXAUVCUVIUWPUUPUVSKUX
698030+
ABUVSUUPCVPUUPDEVQVRZUUMUVIUAUUPAVSUULUUPEFWAVTZWBUVIUXAUWGUVIUWGUXAUVIUW
698031+
GUWTUWGUVIUWTUUPWCWDWEWFWGVRUUPBUUNWHZEWIKUWSUWRWLWJEUUPWKWMZWNWOZVNEWPWQ
698032+
ZQWRWSXBUVNUVLNOAUUPLDUWCUWDDDUUSUVPUWFUWHUWIOBDUUNUWJOUVTQWTZUWMUWLUUSUW
698033+
CKZOUUSEXCVHJZUWCAUUSUXJUWPUVCTZRZUWGEUUPFUCZRZUUPUUSKZUUPUXJKUXLUXAUVITZ
698034+
RUWGUWTUXPRZRUXNUWPUXAUXKUXPUXBUVCUVIUXCXAWBUWGUWTUXPXDUWGUXQUXMUWGUXMEUU
698035+
PNZUVIXETZUXQUWGEUUPUUPXFUWGXGXHUXSUXRTZUXPUWTUXRUVIXIUWTUXTUUPEXNXJXKXLX
698036+
MXOUUPBUUNXPZUUPXQWNWOZEXCWPWQZQWRXBXRUVOUVBNOUUOUUSDUURUUTUWCUWDUWMUWLUW
698037+
EOAUUOUUQPUWBUUPUWAXSXTOAUUSUUPPOUUSPUUPUUSPSOUUSDPUWJUUSDSUVTBDUUNYAWMUQ
698038+
URQVFXTUWKUXHUUOUUSUEYENOBUUNYBQUUOUWCYFMZMZUUSUYDMZHZUUOUUSHZUYDMZNOUYGU
698039+
YHUYIUYEUUOUYFUUSUWCYCKZUWNUYEUUONYDUXGUUOUWCYGYHUYJUXIUYFUUSNYDUYCUUSUWC
698040+
YGYHXRUYJUYHUWCKZUYIUYHNYDUYJUWNUXIUYKYDUXGUYCUUOUUSUWCYIYJUYHUWCYGYHYKQY
698041+
LXBYMUVAUVHDIABUVCUUQUUPUHZGUVAUVHABUUNUUQUUPUJABUYLUVGUWPUVCUUQUUPUVGUWQ
698042+
UVQUUQUVGNZUXDUYMUUPUWOUUOUWSUVGUUQUWSUUPUUPVNEYNZUWSUUPEUYNUWSYOUWSUWGUV
698043+
IUXEYQUUGUUAYPUXFYRYSUXLUXOUUPUVGNZUYAUYOUUPUXJUUSUYOUUPYTUXJUUPYTKUVGUUP
698044+
UUPUUBYPUUHYRUYBYRYSUUCUUDUUEUUIABUVEUVJUVCUVILLUVDUXCLVLUUFUUJUUK $.
698045+
698046+
$( The antiderivative of 1/x in real numbers, without using the absolute
698047+
value function. (Contributed by SN, 1-Oct-2025.) $)
698048+
readvrec2 $p |- ( RR _D ( x e. D |-> ( ( log ` ( x ^ 2 ) ) / 2 ) ) ) =
698049+
( x e. D |-> ( 1 / x ) ) $=
698050+
( vy cr c2 co clog cdiv cmpt cdv c1 cmul wceq wtru cc wcel a1i cc0 crp cv
698051+
cexp cfv cvv cpr reelprrecn wne csn wa eleq2i eldifsn bitri simplbi recnd
698052+
cdif sqcld simprbi wb sqne0 syl mpbird logcld adantl cmnf cioc cnelprrecn
698053+
ovexd cin c0 cpnf cioo incom dfrp2 ineq2i cxr mnfxr 0xr pnfxr iocioodisjd
698054+
mptru 3eqtri disjdif2 ax-mp wss rpsscn ssdif sqn0rp syl2an2 sselid eldifi
698055+
eqsstrri wn eldifn clt wbr mnflt0 0le0 elioc1 mp2an mpbir3an eleq1 mpbiri
698056+
cle w3a necon3bi cmin crn ctg ccnfld ctopn recn eqid cnopn ax-resscn mpbi
698057+
dfss2 sqcl 2nn dvexp mp1i dvmptres3 ssriv tgioo2 ccld cha rehaus uniretop
698058+
cn sncld cldopn eqeltri dvmptres 2m1e1 oveq2i oveq2d mpteq2ia 2cnd oveq1d
698059+
0re 2ne0 exp1d eqtrid eqtrdi cres wf1o logf1o snssi sscon feqresmpt dvlog
698060+
f1of eqtr3di fveq2 oveq2 dvmptco dvmptdivc resqcld rereccld mul12d mulcld
698061+
wf divcan3d sqvald recdiv2d reccld divcan1d 3eqtr2d 3eqtrd eqtri ) EABAUA
698062+
ZFUBGZHUCZFIGJKGZABLUVKIGZFUVJMGZMGZFIGZJZABLUVJIGZJUVMUVRNOAUVLUVPFEUDBE
698063+
EPUEZQOUFRZUVJBQZUVLPQOUWBUVKUWBUVJUWBUVJUWBUVJEQZUVJSUGZUWBUVJESUHZUOZQU
698064+
WCUWDUIBUWFUVJCUJUVJESUKULZUMZUNZUPUWBUVKSUGZUWDUWBUWCUWDUWGUQZUWBUVJPQZU
698065+
WJUWDURUWIUVJUSUTVAZVBVCOUWBUIZUVNUVOMVGOADUVKUVODUAZHUCZLUWOIGZEPUVLUVNU
698066+
DUDBPVDSVEGZUOZUWAPUVTQOVFRUWNTUWSUVKTTUWRUOZUWSTUWRVHZVINUWTTNUXAUWRTVHU
698067+
WRSVJVKGZVHZVITUWRVLTUXBUWRVMVNUXCVINOVDSVJVDVOQZOVPRSVOQZOVQRVJVOQOVRRVS
698068+
VTWATUWRWBWCTPWDUWTUWSWDWETPUWRWFWCWKUWBUWCOUWDUVKTQUWHUWBUWDOUWKVCUVJWGW
698069+
HWIUWNFUVJMVGUWOUWSQZUWPPQOUXFUWOUWOPUWRWJUXFUWOUWRQZWLUWOSUGUWOPUWRWMUXG
698070+
UWOSUWOSNUXGSUWRQZUXHUXEVDSWNWOZSSXCWOZVQWPWQUXDUXEUXHUXEUXIUXJXDURVPVQVD
698071+
SSWRWSWTZUWOSUWRXAXBXEUTVBVCOUXFUILUWOIVGOEABUVKJKGABFUVJFLXFGZUBGZMGZJAB
698072+
UVOJOAUVKUXNEVKXGXHUCZXIXJUCZUDEBUWAOUWCUIZUVJUWCUWLOUVJXKVCUPUXQFUXMMVGO
698073+
AUVKUXNEUXPUDPEUXPXLZUWAPUXPQOXMREPVHENZOEPWDUXSXNEPXPXORUWLUVKPQOUVJXQVC
698074+
OUWLUIFUXMMVGFYHQPAPUVKJKGAPUXNJNOXRAFXSXTYABEWDOABEUWHYBRUXPUXRYCUXRBUXO
698075+
QOBUWFUXOCUWEUXOYDUCQZUWFUXOQUXOYEQSEQUXTYFYSSUXOEYGYIWSUWEUXOEYGYJWCYKRY
698076+
LABUXNUVOUWBUXMUVJFMUWBUXMUVJLUBGUVJUXLLUVJUBYMYNUWBUVJUWIUUAUUBYOYPUUCOP
698077+
HUWSUUDZKGPDUWSUWPJZKGDUWSUWQJOUYAUYBPKODPUWEUOZHXGZUWSHUYCUYDHUUEUYCUYDH
698078+
UVAOUUFUYCUYDHUUKXTUWEUWRWDZUWSUYCWDOUXHUYEUXKSUWRUUGWCUWEUWRPUUHXTUUIYOD
698079+
UWSUWSXLUUJUULUWOUVKHUUMUWOUVKLIUUNUUOOYQFSUGZOYTRUUPVTABUVQUVSUWBUVQFUVN
698080+
UVJMGZMGZFIGUYGUVSUWBUVPUYHFIUWBUVNFUVJUWBUVNUWBUVKUWBUVJUWHUUQUWMUURUNZU
698081+
WBYQZUWIUUSYRUWBUYGFUWBUVNUVJUYIUWIUUTUYJUYFUWBYTRUVBUWBUYGLUVJUVJMGZIGZU
698082+
VJMGUVSUVJIGZUVJMGUVSUWBUVNUYLUVJMUWBUVKUYKLIUWBUVJUWIUVCYOYRUWBUYMUYLUVJ
698083+
MUWBUVJUVJUWIUWIUWKUWKUVDYRUWBUVSUVJUWBUVJUWIUWKUVEUWIUWKUVFUVGUVHYPUVI
698084+
$.
698085+
698086+
$( For real numbers, the antiderivative of 1/x is ln|x|. (Contributed by
698087+
SN, 30-Sep-2025.) $)
698088+
readvrec $p |- ( RR _D ( x e. D |-> ( log ` ( abs ` x ) ) ) ) =
698089+
( x e. D |-> ( 1 / x ) ) $=
698090+
( vy cr clog cmpt cdv co c1 cdiv cc0 cmul wceq wtru cc cmnf wcel a1i wa
698091+
cv cabs cfv clt wbr cneg cif cvv cioc cdif cpr reelprrecn cnelprrecn cpnf
698092+
crp cioo dfrp2 cin c0 cxr mnfxr pnfxr iocioodisjd mptru ineqcomi disjdif2
698093+
0xr ax-mp eqtr4i wss ioosscn ssdif eqsstri wne csn eleq2i eldifsn simplbi
698094+
bitri recnd adantl simprbi absrpcld sselid negex 1ex eldifi eldifn mnflt0
698095+
ifex wn ubioc1 mp3an eleq1 mpbiri necon3bi syl logcld redvmptabs cres crn
698096+
ovexd wf1o logf1o f1of feqmptd reseq1i c0ex snss mpbi sscon resmpt eqtr2i
698097+
wf mp2b oveq2i dvlog eqtri fveq2 oveq2 dvmptco ovif2 simpll abscld simplr
698098+
eqid absne0d reccld neg1cn mulcomd mulm1d 1cnd divneg2d 0red simpr oveq2d
698099+
ltled eqtrd sylanb ad2antrr absnidd eqcomd negcon1ad 3eqtrd recn rereccld
698100+
mulridd cle simpl lenltd biimpar absidd ifeqda eqtrid mpteq2ia ) EABAUAZU
698101+
BUCZFUCZGHIZABJUUQKIZUUPLUDUEZJUFZJUGZMIZGZABJUUPKIZGUUSUVENOADUUQUVCDUAZ
698102+
FUCZJUVGKIZEPUURUUTUHUHBPQLUIIZUJZEEPUKZROULSPUVLROUMSOUUPBRZTZUOUVKUUQUO
698103+
LUNUPIZUVJUJZUVKUOUVOUVPUQUVOUVJURUSNUVPUVONUVJUVOUSUVJUVOURUSNOQLUNQUTRZ
698104+
OVASLUTRZOVGSUNUTROVBSVCVDVEUVOUVJVFVHVIUVOPVJUVPUVKVJLUNVKUVOPUVJVLVHVMU
698105+
VNUUPUVMUUPPRZOUVMUUPUVMUUPERZUUPLVNZUVMUUPELVOZUJZRUVTUWATZBUWCUUPCVPUUP
698106+
ELVQVSZVRVTWAUVMUWAOUVMUVTUWAUWEWBWAWCWDUVCUHRUVNUVAUVBJJWEWFWJSOUVGUVKRZ
698107+
TZUVGUWFUVGPROUVGPUVJWGWAUWFUVGLVNZOUWFUVGUVJRZWKUWHUVGPUVJWHUWIUVGLUVGLN
698108+
UWILUVJRZUVQUVRQLUDUEUWJVAVGWIQLWLWMZUVGLUVJWNWOWPWQWAWRUWGJUVGKXBEABUUQG
698109+
HIABUVCGNOABCWSSPDUVKUVHGZHIZDUVKUVIGZNOUWMPFUVKWTZHIUWNUWLUWOPHUWODPUWBU
698110+
JZUVHGZUVKWTZUWLFUWQUVKFUWQNODUWPFXAZFUWPUWSFXNZOUWPUWSFXCUWTXDUWPUWSFXEV
698111+
HSXFVDXGUWBUVJVJZUVKUWPVJUWRUWLNUWJUXAUWKLUVJXHXIXJUWBUVJPXKDUWPUVKUVHXLX
698112+
OXMXPDUVKUVKYFXQXRSUVGUUQFXSUVGUUQJKXTYAVDABUVDUVFUVMUVDUVAUUTUVBMIZUUTJM
698113+
IZUGUVFUVAUUTUVBJMYBUVMUVAUXBUXCUVFUVMUWDUVAUXBUVFNUWEUWDUVATZUXBUVBUUTMI
698114+
UUTUFZUVFUXDUUTUVBUXDUUQUXDUUQUXDUUPUXDUUPUVTUWAUVAYCZVTZYDVTZUXDUUPUXGUV
698115+
TUWAUVAYEYGZYHZUVBPRUXDYISYJUXDUUTUXJYKUXDUXEJUUQUFZKIUVFUXDJUUQUXDYLUXHU
698116+
XIYMUXDUXKUUPJKUXDUUPUUQUXGUXDUUQUUPUFUXDUUPUXFUXDUUPLUXFUXDYNUWDUVAYOYQU
698117+
UAUUBUUCYPYRUUDYSUVMUWDUVAWKZUXCUVFNUWEUWDUXLTZUXCUUTUVFUXMUUTUXMUUTUXMUU
698118+
QUVTUUQERUWAUXLUVTUUPUUPUUEZYDYTUXMUUPUVTUVSUWAUXLUXNYTUVTUWAUXLYEYGUUFVT
698119+
UUGUXMUUQUUPJKUXMUUPUVTUWAUXLYCUWDLUUPUUHUEUXLUWDLUUPUWDYNUVTUWAUUIUUJUUK
698120+
UULYPYRYSUUMUUNUUOXR $.
698121+
$}
698122+
697949698123

697950698124
$(
697951698125
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -750072,8 +750246,7 @@ not even needed (it can be any class). (Contributed by Glauco
750072750246
$( The positive reals form a set. (Contributed by Glauco Siliprandi,
750073750247
11-Oct-2020.) $)
750074750248
rpex $p |- RR+ e. _V $=
750075-
( crp ccnfld cmgp cfv cc cc0 csn cdif cress co csubg eqid rpmsubg elexi ) A
750076-
BCDEFGHIJZKDOOLMN $.
750249+
( crp cr reex rpssre ssexi ) ABCDE $.
750077750250

750078750251
$( A nonnegative extended real is nonnegative. (Contributed by Glauco
750079750252
Siliprandi, 11-Oct-2020.) $)

0 commit comments

Comments
 (0)