@@ -41524,6 +41524,14 @@ among classes ( ~ eq0 , as opposed to the weaker uniqueness among sets,
41524
41524
UGUH $.
41525
41525
$}
41526
41526
41527
+ $( The intersection and class difference of a class with another class are
41528
+ disjoint. With ~ inundif , this shows that such intersection and class
41529
+ difference partition the class ` A ` . (Contributed by Thierry Arnoux,
41530
+ 13-Sep-2017.) $)
41531
+ inindif $p |- ( ( A i^i C ) i^i ( A \ C ) ) = (/) $=
41532
+ ( cin wss cdif c0 wceq inss2 ssinss1 ax-mp inssdif0 mpbi ) ABCZACBDZMABECFG
41533
+ MBDNABHMABIJMABKL $.
41534
+
41527
41535
${
41528
41536
$d A x $.
41529
41537
$( The difference between a class and itself is the empty set. Proposition
@@ -502773,11 +502781,6 @@ Class abstractions (a.k.a. class builders)
502773
502781
inin $p |- ( A i^i ( A i^i B ) ) = ( A i^i B ) $=
502774
502782
( cin in13 inidm ineq2i incom 3eqtri ) AABCZCBAACZCBACIAABDJABAEFBAGH $.
502775
502783
502776
- $( See ~ inundif . (Contributed by Thierry Arnoux, 13-Sep-2017.) $)
502777
- inindif $p |- ( ( A i^i C ) i^i ( A \ C ) ) = (/) $=
502778
- ( cin wss cdif c0 wceq wo inss2 orci inss ax-mp inssdif0 mpbi ) ABCZACBDZOA
502779
- BECFGOBDZABDZHPQRABIJOABKLOABMN $.
502780
-
502781
502784
$( Condition for the intersections of two sets with a given set to be equal.
502782
502785
(Contributed by Thierry Arnoux, 28-Dec-2021.) $)
502783
502786
difininv $p |- ( ( ( ( A \ C ) i^i B ) = (/) /\ ( ( C \ A ) i^i B ) = (/) )
@@ -697256,6 +697259,11 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
697256
697259
( c9 c2 cexp co cmul c8 c1 cdc 9cn sqvali 9t9e81 eqtri ) ABCDAAEDFGHAIJKL
697257
697260
$.
697258
697261
697262
+ $( The positive reals are a subset of the complex numbers. (Contributed by
697263
+ SN, 1-Oct-2025.) $)
697264
+ rpsscn $p |- RR+ C_ CC $=
697265
+ ( crp cr cc rpssre ax-resscn sstri ) ABCDEF $.
697266
+
697259
697267
$( 4 is a positive real. (Contributed by SN, 26-Aug-2025.) $)
697260
697268
4rp $p |- 4 e. RR+ $=
697261
697269
( c4 4re 4pos elrpii ) ABCD $.
@@ -697484,6 +697492,26 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
697484
697492
( cr wcel ci cmul co cc0 wceq recn ax-icn a1i mulcomd eleq1d itrere bitrd
697485
697493
cc ) ABCZADEFZBCDAEFZBCAGHQRSBQADAIDPCQJKLMANO $.
697486
697494
697495
+ ${
697496
+ $d A w x y z $. $d B w x y z $. $d C w x y z $.
697497
+ ixxdisjd.a $e |- ( ph -> A e. RR* ) $.
697498
+ ixxdisjd.b $e |- ( ph -> B e. RR* ) $.
697499
+ ixxdisjd.c $e |- ( ph -> C e. RR* ) $.
697500
+ $( Adjacent intervals where the lower interval is right-closed and the
697501
+ upper interval is open are disjoint. (Contributed by SN,
697502
+ 1-Oct-2025.) $)
697503
+ iocioodisjd $p |- ( ph -> ( ( A (,] B ) i^i ( B (,) C ) ) = (/) ) $=
697504
+ ( vx vy vz vw cxr wcel cioc co cioo cin c0 wceq clt df-ioc df-ioo xrltnle
697505
+ cle cv ixxdisj syl3anc ) ABLMCLMDLMBCNOCDPOQRSEFGHIJKBCDPTUDTTNHIJUAHIJUB
697506
+ CKUEUCUFUG $.
697507
+ $}
697508
+
697509
+ $( A positive real is its own absolute value. (Contributed by SN,
697510
+ 1-Oct-2025.) $)
697511
+ rpabsid $p |- ( R e. RR+ -> ( abs ` R ) = R ) $=
697512
+ ( crp wcel cr cc0 cle wbr cabs cfv wceq rpre rpge0 absid syl2anc ) ABCADCEA
697513
+ FGAHIAJAKALAMN $.
697514
+
697487
697515
697488
697516
$(
697489
697517
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -697895,7 +697923,7 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
697895
697923
697896
697924
$(
697897
697925
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
697898
- Trigonometry
697926
+ Trigonometry and Calculus
697899
697927
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
697900
697928
$)
697901
697929
@@ -697946,6 +697974,152 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
697946
697974
VLVQVLULJVPVLIVRVLUMUNVLVQJZVLNJZKVLORZVLAORZVLVRPABLMQSUOWBAACDZBORWCGBOAU
697947
697975
PALQUQURUSUTABALMLSQVAVCKNJANJVSVTWAWBVDVEVFALPKAVLVGTVHVIVLVJTVK $.
697948
697976
697977
+ ${
697978
+ dvun.j $e |- J = ( K |`t S ) $.
697979
+ dvun.k $e |- K = ( TopOpen ` CCfld ) $.
697980
+ dvun.s $e |- ( ph -> S C_ CC ) $.
697981
+ dvun.f $e |- ( ph -> F : A --> CC ) $.
697982
+ dvun.g $e |- ( ph -> G : B --> CC ) $.
697983
+ dvun.a $e |- ( ph -> A C_ S ) $.
697984
+ dvun.b $e |- ( ph -> B C_ S ) $.
697985
+ dvun.d $e |- ( ph -> ( A i^i B ) = (/) ) $.
697986
+ dvun.n $e |- ( ph -> ( ( ( int ` J ) ` A ) u. ( ( int ` J ) ` B ) )
697987
+ = ( ( int ` J ) ` ( A u. B ) ) ) $.
697988
+ $( Condition for the union of the derivatives of two disjoint functions to
697989
+ be equal to the derivative of the union of the two functions. If ` A `
697990
+ and ` B ` are open sets, this condition (dvun.n) is satisfied by
697991
+ ~ isopn3i . (Contributed by SN, 30-Sep-2025.) $)
697992
+ dvun $p |- ( ph -> ( ( S _D F ) u. ( S _D G ) ) = ( S _D ( F u. G ) ) ) $=
697993
+ ( cdv cres wceq cun co cnt cfv resundi reseq2d eqtr3id cc wss fun2d unssd
697994
+ wf dvres syl22anc wfn cin c0 ffnd fnunres1 syl3anc oveq2d eqtr3d fnunres2
697995
+ uneq12d fnresdm syl 3eqtr3d ) ADEFUAZRUBZBGUCUDZUDZSZVICVJUDZSZUAZVIBCUAZ
697996
+ VJUDZSZDERUBZDFRUBZUAVIAVOVIVKVMUAZSVRVIVKVMUEAWAVQVIQUFUGAVLVSVNVTADVHBS
697997
+ ZRUBZVLVSADUHUIZVPUHVHULZVPDUIZBDUIWCVLTKABCUHEFLMPUJZABCDNOUKZNVPBDGVHHJ
697998
+ IUMUNAWBEDRAEBUOZFCUOZBCUPUQTZWBETABUHELURZACUHFMURZPBCEFUSUTVAVBADVHCSZR
697999
+ UBZVNVTAWDWEWFCDUIWOVNTKWGWHOVPCDGVHHJIUMUNAWNFDRAWIWJWKWNFTWLWMPBCEFVCUT
698000
+ VAVBVDADVHVPSZRUBZVRVIAWDWEWFWFWQVRTKWGWHWHVPVPDGVHHJIUMUNAWPVHDRAVHVPUOW
698001
+ PVHTAVPUHVHWGURVPVHVEVFVAVBVG $.
698002
+ $}
698003
+
698004
+ $( A good example of ~ dvmptco is ~ dvsinexp . $)
698005
+
698006
+ ${
698007
+ $d x y $. $d D x $.
698008
+ redvabs.d $e |- D = ( RR \ { 0 } ) $.
698009
+ $( The derivative of the absolute value, for real numbers. (Contributed by
698010
+ SN, 30-Sep-2025.) $)
698011
+ redvmptabs $p |- ( RR _D ( x e. D |-> ( abs ` x ) ) ) =
698012
+ ( x e. D |-> if ( x < 0 , -u 1 , 1 ) ) $=
698013
+ ( cr cc0 clt cmpt cun cdv co wcel c1 cfv wceq wtru cc a1i wa wss wn vy cv
698014
+ wbr cab cin cneg cdif cif cabs partfun cpr reelprrecn inss1 difss eqsstri
698015
+ csn ax-resscn sstri sseli adantl 1cnd crn ctg ccnfld ctopn sselda dvmptid
698016
+ cioo 1red ssinss1 mp1i eqid tgioo2 cmnf wne eleq2i eldifsn bitri vex elab
698017
+ breq1 anbi12i lt0ne0 expcom pm4.71d bicomd pm5.32ri elin cxr 0xr elioomnf
698018
+ wb ax-mp 3bitr4i eqriv iooretop eqeltri dvmptres dvmptneg ssdifssd notbii
698019
+ mptru cpnf anass wo elre0re id lttrid ioran bicomi bianbi bitr2di pm5.32i
698020
+ nesym 3bitri eldif repos uneq12i negcld fmpttd ssdifss inindif ctop retop
698021
+ c0 cnt isopn3i mp2an unopn mp3an eqtr4i dvun 3eqtr2ri elioore 0red eqcomd
698022
+ simprbi eleq2s sylbir crp absnidd rpabsid ifeqda mpteq2ia eqtr3i ifbieq2i
698023
+ ltled ioorp oveq2i mpteq2i 3eqtr3i ) DABUAUBZEFUCZUAUDZUEZAUBZUFZGZABUUNU
698024
+ GZUUPGZHZIJZABUUPUUNKZLUFZLUHZGZDABUUPUIMZGZIJABUUPEFUCZUVDLUHZGUVFAUUOUV
698025
+ DGZAUUSLGZHDUURIJZDUUTIJZHZUVBABUUNUVDLUJUVMUVKUVNUVLUVMUVKNOAUUPLDPUUODD
698026
+ PUKKOULQZUUPUUOKZUUPPKOUUOPUUPUUOBPBUUNUMBDPBDEUPZUGZDCDUVRUNUOZUQURURUSU
698027
+ TZOUVQRZVAOAUUPLDVHVBVCMZVDVEMZDDUUOUVPODPUUPDPSOUQQZVFZOUUPDKZRVIZOADUVP
698028
+ VGZBDSZUUODSOUVTBUUNDVJVKZUWDUWDVLZVMZUWLUUOUWCKZOUUOVNEVHJZUWCAUUOUWOUUP
698029
+ BKZUVCRZUWGUVIRZUVQUUPUWOKZUWQUWGUUPEVOZRZUVIRUWRUWPUXAUVCUVIUWPUUPUVSKUX
698030
+ ABUVSUUPCVPUUPDEVQVRZUUMUVIUAUUPAVSUULUUPEFWAVTZWBUVIUXAUWGUVIUWGUXAUVIUW
698031
+ GUWTUWGUVIUWTUUPWCWDWEWFWGVRUUPBUUNWHZEWIKUWSUWRWLWJEUUPWKWMZWNWOZVNEWPWQ
698032
+ ZQWRWSXBUVNUVLNOAUUPLDUWCUWDDDUUSUVPUWFUWHUWIOBDUUNUWJOUVTQWTZUWMUWLUUSUW
698033
+ CKZOUUSEXCVHJZUWCAUUSUXJUWPUVCTZRZUWGEUUPFUCZRZUUPUUSKZUUPUXJKUXLUXAUVITZ
698034
+ RUWGUWTUXPRZRUXNUWPUXAUXKUXPUXBUVCUVIUXCXAWBUWGUWTUXPXDUWGUXQUXMUWGUXMEUU
698035
+ PNZUVIXETZUXQUWGEUUPUUPXFUWGXGXHUXSUXRTZUXPUWTUXRUVIXIUWTUXTUUPEXNXJXKXLX
698036
+ MXOUUPBUUNXPZUUPXQWNWOZEXCWPWQZQWRXBXRUVOUVBNOUUOUUSDUURUUTUWCUWDUWMUWLUW
698037
+ EOAUUOUUQPUWBUUPUWAXSXTOAUUSUUPPOUUSPUUPUUSPSOUUSDPUWJUUSDSUVTBDUUNYAWMUQ
698038
+ URQVFXTUWKUXHUUOUUSUEYENOBUUNYBQUUOUWCYFMZMZUUSUYDMZHZUUOUUSHZUYDMZNOUYGU
698039
+ YHUYIUYEUUOUYFUUSUWCYCKZUWNUYEUUONYDUXGUUOUWCYGYHUYJUXIUYFUUSNYDUYCUUSUWC
698040
+ YGYHXRUYJUYHUWCKZUYIUYHNYDUYJUWNUXIUYKYDUXGUYCUUOUUSUWCYIYJUYHUWCYGYHYKQY
698041
+ LXBYMUVAUVHDIABUVCUUQUUPUHZGUVAUVHABUUNUUQUUPUJABUYLUVGUWPUVCUUQUUPUVGUWQ
698042
+ UVQUUQUVGNZUXDUYMUUPUWOUUOUWSUVGUUQUWSUUPUUPVNEYNZUWSUUPEUYNUWSYOUWSUWGUV
698043
+ IUXEYQUUGUUAYPUXFYRYSUXLUXOUUPUVGNZUYAUYOUUPUXJUUSUYOUUPYTUXJUUPYTKUVGUUP
698044
+ UUPUUBYPUUHYRUYBYRYSUUCUUDUUEUUIABUVEUVJUVCUVILLUVDUXCLVLUUFUUJUUK $.
698045
+
698046
+ $( The antiderivative of 1/x in real numbers, without using the absolute
698047
+ value function. (Contributed by SN, 1-Oct-2025.) $)
698048
+ readvrec2 $p |- ( RR _D ( x e. D |-> ( ( log ` ( x ^ 2 ) ) / 2 ) ) ) =
698049
+ ( x e. D |-> ( 1 / x ) ) $=
698050
+ ( vy cr c2 co clog cdiv cmpt cdv c1 cmul wceq wtru cc wcel a1i cc0 crp cv
698051
+ cexp cfv cvv cpr reelprrecn wne csn wa eleq2i eldifsn bitri simplbi recnd
698052
+ cdif sqcld simprbi wb sqne0 syl mpbird logcld adantl cmnf cioc cnelprrecn
698053
+ ovexd cin c0 cpnf cioo incom dfrp2 ineq2i cxr mnfxr 0xr pnfxr iocioodisjd
698054
+ mptru 3eqtri disjdif2 ax-mp wss rpsscn ssdif sqn0rp syl2an2 sselid eldifi
698055
+ eqsstrri wn eldifn clt wbr mnflt0 0le0 elioc1 mp2an mpbir3an eleq1 mpbiri
698056
+ cle w3a necon3bi cmin crn ctg ccnfld ctopn recn eqid cnopn ax-resscn mpbi
698057
+ dfss2 sqcl 2nn dvexp mp1i dvmptres3 ssriv tgioo2 ccld cha rehaus uniretop
698058
+ cn sncld cldopn eqeltri dvmptres 2m1e1 oveq2i oveq2d mpteq2ia 2cnd oveq1d
698059
+ 0re 2ne0 exp1d eqtrid eqtrdi cres wf1o logf1o snssi sscon feqresmpt dvlog
698060
+ f1of eqtr3di fveq2 oveq2 dvmptco dvmptdivc resqcld rereccld mul12d mulcld
698061
+ wf divcan3d sqvald recdiv2d reccld divcan1d 3eqtr2d 3eqtrd eqtri ) EABAUA
698062
+ ZFUBGZHUCZFIGJKGZABLUVKIGZFUVJMGZMGZFIGZJZABLUVJIGZJUVMUVRNOAUVLUVPFEUDBE
698063
+ EPUEZQOUFRZUVJBQZUVLPQOUWBUVKUWBUVJUWBUVJUWBUVJEQZUVJSUGZUWBUVJESUHZUOZQU
698064
+ WCUWDUIBUWFUVJCUJUVJESUKULZUMZUNZUPUWBUVKSUGZUWDUWBUWCUWDUWGUQZUWBUVJPQZU
698065
+ WJUWDURUWIUVJUSUTVAZVBVCOUWBUIZUVNUVOMVGOADUVKUVODUAZHUCZLUWOIGZEPUVLUVNU
698066
+ DUDBPVDSVEGZUOZUWAPUVTQOVFRUWNTUWSUVKTTUWRUOZUWSTUWRVHZVINUWTTNUXAUWRTVHU
698067
+ WRSVJVKGZVHZVITUWRVLTUXBUWRVMVNUXCVINOVDSVJVDVOQZOVPRSVOQZOVQRVJVOQOVRRVS
698068
+ VTWATUWRWBWCTPWDUWTUWSWDWETPUWRWFWCWKUWBUWCOUWDUVKTQUWHUWBUWDOUWKVCUVJWGW
698069
+ HWIUWNFUVJMVGUWOUWSQZUWPPQOUXFUWOUWOPUWRWJUXFUWOUWRQZWLUWOSUGUWOPUWRWMUXG
698070
+ UWOSUWOSNUXGSUWRQZUXHUXEVDSWNWOZSSXCWOZVQWPWQUXDUXEUXHUXEUXIUXJXDURVPVQVD
698071
+ SSWRWSWTZUWOSUWRXAXBXEUTVBVCOUXFUILUWOIVGOEABUVKJKGABFUVJFLXFGZUBGZMGZJAB
698072
+ UVOJOAUVKUXNEVKXGXHUCZXIXJUCZUDEBUWAOUWCUIZUVJUWCUWLOUVJXKVCUPUXQFUXMMVGO
698073
+ AUVKUXNEUXPUDPEUXPXLZUWAPUXPQOXMREPVHENZOEPWDUXSXNEPXPXORUWLUVKPQOUVJXQVC
698074
+ OUWLUIFUXMMVGFYHQPAPUVKJKGAPUXNJNOXRAFXSXTYABEWDOABEUWHYBRUXPUXRYCUXRBUXO
698075
+ QOBUWFUXOCUWEUXOYDUCQZUWFUXOQUXOYEQSEQUXTYFYSSUXOEYGYIWSUWEUXOEYGYJWCYKRY
698076
+ LABUXNUVOUWBUXMUVJFMUWBUXMUVJLUBGUVJUXLLUVJUBYMYNUWBUVJUWIUUAUUBYOYPUUCOP
698077
+ HUWSUUDZKGPDUWSUWPJZKGDUWSUWQJOUYAUYBPKODPUWEUOZHXGZUWSHUYCUYDHUUEUYCUYDH
698078
+ UVAOUUFUYCUYDHUUKXTUWEUWRWDZUWSUYCWDOUXHUYEUXKSUWRUUGWCUWEUWRPUUHXTUUIYOD
698079
+ UWSUWSXLUUJUULUWOUVKHUUMUWOUVKLIUUNUUOOYQFSUGZOYTRUUPVTABUVQUVSUWBUVQFUVN
698080
+ UVJMGZMGZFIGUYGUVSUWBUVPUYHFIUWBUVNFUVJUWBUVNUWBUVKUWBUVJUWHUUQUWMUURUNZU
698081
+ WBYQZUWIUUSYRUWBUYGFUWBUVNUVJUYIUWIUUTUYJUYFUWBYTRUVBUWBUYGLUVJUVJMGZIGZU
698082
+ VJMGUVSUVJIGZUVJMGUVSUWBUVNUYLUVJMUWBUVKUYKLIUWBUVJUWIUVCYOYRUWBUYMUYLUVJ
698083
+ MUWBUVJUVJUWIUWIUWKUWKUVDYRUWBUVSUVJUWBUVJUWIUWKUVEUWIUWKUVFUVGUVHYPUVI
698084
+ $.
698085
+
698086
+ $( For real numbers, the antiderivative of 1/x is ln|x|. (Contributed by
698087
+ SN, 30-Sep-2025.) $)
698088
+ readvrec $p |- ( RR _D ( x e. D |-> ( log ` ( abs ` x ) ) ) ) =
698089
+ ( x e. D |-> ( 1 / x ) ) $=
698090
+ ( vy cr clog cmpt cdv co c1 cdiv cc0 cmul wceq wtru cc cmnf wcel a1i wa
698091
+ cv cabs cfv clt wbr cneg cif cvv cioc cdif cpr reelprrecn cnelprrecn cpnf
698092
+ crp cioo dfrp2 cin c0 cxr mnfxr pnfxr iocioodisjd mptru ineqcomi disjdif2
698093
+ 0xr ax-mp eqtr4i wss ioosscn ssdif eqsstri wne csn eleq2i eldifsn simplbi
698094
+ bitri recnd adantl simprbi absrpcld sselid negex 1ex eldifi eldifn mnflt0
698095
+ ifex wn ubioc1 mp3an eleq1 mpbiri necon3bi syl logcld redvmptabs cres crn
698096
+ ovexd wf1o logf1o f1of feqmptd reseq1i c0ex snss mpbi sscon resmpt eqtr2i
698097
+ wf mp2b oveq2i dvlog eqtri fveq2 oveq2 dvmptco ovif2 simpll abscld simplr
698098
+ eqid absne0d reccld neg1cn mulcomd mulm1d 1cnd divneg2d 0red simpr oveq2d
698099
+ ltled eqtrd sylanb ad2antrr absnidd eqcomd negcon1ad 3eqtrd recn rereccld
698100
+ mulridd cle simpl lenltd biimpar absidd ifeqda eqtrid mpteq2ia ) EABAUAZU
698101
+ BUCZFUCZGHIZABJUUQKIZUUPLUDUEZJUFZJUGZMIZGZABJUUPKIZGUUSUVENOADUUQUVCDUAZ
698102
+ FUCZJUVGKIZEPUURUUTUHUHBPQLUIIZUJZEEPUKZROULSPUVLROUMSOUUPBRZTZUOUVKUUQUO
698103
+ LUNUPIZUVJUJZUVKUOUVOUVPUQUVOUVJURUSNUVPUVONUVJUVOUSUVJUVOURUSNOQLUNQUTRZ
698104
+ OVASLUTRZOVGSUNUTROVBSVCVDVEUVOUVJVFVHVIUVOPVJUVPUVKVJLUNVKUVOPUVJVLVHVMU
698105
+ VNUUPUVMUUPPRZOUVMUUPUVMUUPERZUUPLVNZUVMUUPELVOZUJZRUVTUWATZBUWCUUPCVPUUP
698106
+ ELVQVSZVRVTWAUVMUWAOUVMUVTUWAUWEWBWAWCWDUVCUHRUVNUVAUVBJJWEWFWJSOUVGUVKRZ
698107
+ TZUVGUWFUVGPROUVGPUVJWGWAUWFUVGLVNZOUWFUVGUVJRZWKUWHUVGPUVJWHUWIUVGLUVGLN
698108
+ UWILUVJRZUVQUVRQLUDUEUWJVAVGWIQLWLWMZUVGLUVJWNWOWPWQWAWRUWGJUVGKXBEABUUQG
698109
+ HIABUVCGNOABCWSSPDUVKUVHGZHIZDUVKUVIGZNOUWMPFUVKWTZHIUWNUWLUWOPHUWODPUWBU
698110
+ JZUVHGZUVKWTZUWLFUWQUVKFUWQNODUWPFXAZFUWPUWSFXNZOUWPUWSFXCUWTXDUWPUWSFXEV
698111
+ HSXFVDXGUWBUVJVJZUVKUWPVJUWRUWLNUWJUXAUWKLUVJXHXIXJUWBUVJPXKDUWPUVKUVHXLX
698112
+ OXMXPDUVKUVKYFXQXRSUVGUUQFXSUVGUUQJKXTYAVDABUVDUVFUVMUVDUVAUUTUVBMIZUUTJM
698113
+ IZUGUVFUVAUUTUVBJMYBUVMUVAUXBUXCUVFUVMUWDUVAUXBUVFNUWEUWDUVATZUXBUVBUUTMI
698114
+ UUTUFZUVFUXDUUTUVBUXDUUQUXDUUQUXDUUPUXDUUPUVTUWAUVAYCZVTZYDVTZUXDUUPUXGUV
698115
+ TUWAUVAYEYGZYHZUVBPRUXDYISYJUXDUUTUXJYKUXDUXEJUUQUFZKIUVFUXDJUUQUXDYLUXHU
698116
+ XIYMUXDUXKUUPJKUXDUUPUUQUXGUXDUUQUUPUFUXDUUPUXFUXDUUPLUXFUXDYNUWDUVAYOYQU
698117
+ UAUUBUUCYPYRUUDYSUVMUWDUVAWKZUXCUVFNUWEUWDUXLTZUXCUUTUVFUXMUUTUXMUUTUXMUU
698118
+ QUVTUUQERUWAUXLUVTUUPUUPUUEZYDYTUXMUUPUVTUVSUWAUXLUXNYTUVTUWAUXLYEYGUUFVT
698119
+ UUGUXMUUQUUPJKUXMUUPUVTUWAUXLYCUWDLUUPUUHUEUXLUWDLUUPUWDYNUVTUWAUUIUUJUUK
698120
+ UULYPYRYSUUMUUNUUOXR $.
698121
+ $}
698122
+
697949
698123
697950
698124
$(
697951
698125
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -750072,8 +750246,7 @@ not even needed (it can be any class). (Contributed by Glauco
750072
750246
$( The positive reals form a set. (Contributed by Glauco Siliprandi,
750073
750247
11-Oct-2020.) $)
750074
750248
rpex $p |- RR+ e. _V $=
750075
- ( crp ccnfld cmgp cfv cc cc0 csn cdif cress co csubg eqid rpmsubg elexi ) A
750076
- BCDEFGHIJZKDOOLMN $.
750249
+ ( crp cr reex rpssre ssexi ) ABCDE $.
750077
750250
750078
750251
$( A nonnegative extended real is nonnegative. (Contributed by Glauco
750079
750252
Siliprandi, 11-Oct-2020.) $)
0 commit comments