File tree Expand file tree Collapse file tree 1 file changed +0
-27
lines changed Expand file tree Collapse file tree 1 file changed +0
-27
lines changed Original file line number Diff line number Diff line change @@ -835491,33 +835491,6 @@ have GLB (expanded version). (Contributed by Zhi Wang,
835491
835491
GHZCGHZADEBCIJZKZDELZUAHZSTMFUBUDDEUANOBCUCPQR $.
835492
835492
$}
835493
835493
835494
- ${
835495
- funcel1.b $e |- B = ( Base ` D ) $.
835496
- funcel1.f $e |- ( ph -> F ( D Func E ) G ) $.
835497
- funcel1.x $e |- ( ph -> X e. B ) $.
835498
-
835499
- ${
835500
- funcel1.c $e |- C = ( Base ` E ) $.
835501
- $( The object part of a functor maps into the base set.
835502
- (Contributed by Zhi Wang,
835503
- 17-Sep-2025.) $)
835504
- funcel1 $p |- ( ph -> ( F ` X ) e. C ) $=
835505
- ( funcf1 ffvelcdmd ) ABCHFABCDEFGILJMKN $.
835506
- $}
835507
-
835508
- ${
835509
- funcel2.h $e |- H = ( Hom ` D ) $.
835510
- funcel2.j $e |- J = ( Hom ` E ) $.
835511
- funcel2.y $e |- ( ph -> Y e. B ) $.
835512
- funcel2.m $e |- ( ph -> M e. ( X H Y ) ) $.
835513
- $( The morphism part of a functor maps into the hom set.
835514
- (Contributed by Zhi Wang,
835515
- 17-Sep-2025.) $)
835516
- funcel2 $p |- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) J ( F ` Y ) ) ) $=
835517
- ( ) ? $.
835518
- $}
835519
- $}
835520
-
835521
835494
${
835522
835495
$d B x y z $. $d F x y z $. $d G x y z $. $d H x y z $. $d J x y z $.
835523
835496
$( A utility theorem for proving equivalence of "is a functor".
You can’t perform that action at this time.
0 commit comments