Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions changes-set.txt
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,7 @@ make a github issue.)

DONE:
Date Old New Notes
11-Sep-25 cascl [same] revised - algSc may be non-injective
10-Sep-25 soeq12d [same] Moved from SO's mathbox to main set.mm
10-Sep-25 freq12d [same] Moved from SO's mathbox to main set.mm
10-Sep-25 weeq12d [same] Moved from SO's mathbox to main set.mm
Expand Down
113 changes: 107 additions & 6 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -283964,7 +283964,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
$( Algebraic span function. $)
casp $a class AlgSpan $.

$( Class of algebra scalar injection function. $)
$( Class of algebra scalars function. $)
cascl $a class algSc $.

${
Expand Down Expand Up @@ -284376,7 +284376,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
asclfval.k $e |- K = ( Base ` F ) $.
asclfval.s $e |- .x. = ( .s ` W ) $.
asclfval.o $e |- .1. = ( 1r ` W ) $.
$( Function value of the algebraic scalars function. (Contributed by Mario
$( Function value of the algebra scalars function. (Contributed by Mario
Carneiro, 8-Mar-2015.) $)
asclfval $p |- A = ( x e. K |-> ( x .x. .1. ) ) $=
( vw cascl cfv cmpt cbs csca eqtr4di c0 cv cvv wcel wceq cur cvsca fveq2d
Expand Down Expand Up @@ -284533,8 +284533,8 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
$d x y A $. $d x y F $. $d x y W $.
asclrhm.a $e |- A = ( algSc ` W ) $.
asclrhm.f $e |- F = ( Scalar ` W ) $.
$( The scalar injection is a ring homomorphism. (Contributed by Mario
Carneiro, 8-Mar-2015.) $)
$( The algebra scalars function is a ring homomorphism. (Contributed by
Mario Carneiro, 8-Mar-2015.) $)
asclrhm $p |- ( W e. AssAlg -> A e. ( F RingHom W ) ) $=
( vx vy casa wcel cbs cfv cmulr cur assasca assaring assalmod ascl1 cv co
eqid wceq ascldimul 3expb asclghm isrhm2d ) CHIZFGBJKZBCBLKZCLKZBMKZACMKZ
Expand All @@ -284547,7 +284547,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
rnascl.a $e |- A = ( algSc ` W ) $.
rnascl.o $e |- .1. = ( 1r ` W ) $.
rnascl.n $e |- N = ( LSpan ` W ) $.
$( The set of injected scalars is also interpretable as the span of the
$( The set of lifted scalars is also interpretable as the span of the
identity. (Contributed by Mario Carneiro, 9-Mar-2015.) $)
rnascl $p |- ( W e. AssAlg -> ran A = ( N ` { .1. } ) ) $=
( vx vy casa wcel crn cv cvsca cfv co wceq csca cbs eqid cab csn asclfval
Expand Down Expand Up @@ -284620,7 +284620,7 @@ the same dimension over the same (nonzero) ring. (Contributed by AV,
$d S x $. $d W x $. $d X x $.
ressascl.a $e |- A = ( algSc ` W ) $.
ressascl.x $e |- X = ( W |`s S ) $.
$( The injection of scalars is invariant between subalgebras and
$( The lifting of scalars is invariant between subalgebras and
superalgebras. (Contributed by Mario Carneiro, 9-Mar-2015.) $)
ressascl $p |- ( S e. ( SubRing ` W ) -> A = ( algSc ` X ) ) $=
( vx csubrg cfv wcel csca cbs cv cur cvsca co cmpt cascl eqid asclfval
Expand Down Expand Up @@ -835145,6 +835145,107 @@ have GLB (expanded version). (Contributed by Zhi Wang,
$}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Rings
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)


$(
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
Multiplicative Group
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
$)

${
$d B y $. $d M y $. $d R y $. $d X y $. $d ph y $.
elmgpcntrd.b $e |- B = ( Base ` R ) $.
elmgpcntrd.m $e |- M = ( mulGrp ` R ) $.
elmgpcntrd.z $e |- Z = ( Cntr ` M ) $.
elmgpcntrd.x $e |- ( ph -> X e. B ) $.
elmgpcntrd.y $e |- ( ( ph /\ y e. B ) ->
( X ( .r ` R ) y ) = ( y ( .r ` R ) X ) ) $.
$( The center of a ring. (Contributed by Zhi Wang, 11-Sep-2025.) $)
elmgpcntrd $p |- ( ph -> X e. Z ) $=
( wcel cv cmulr cfv co wceq wral ralrimiva mgpbas eqid mgpplusg sylanbrc
elcntr ) AFCMFBNZDOPZQUFFUGQRZBCSFGMKAUHBCLTBFCUGEGCDEIHUADUGEIUGUBUCJUEU
D $.
$}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Associative algebras
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)


$(
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
Definition and basic properties
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
$)

${
asclelbas.a $e |- A = ( algSc ` W ) $.
asclelbas.f $e |- F = ( Scalar ` W ) $.
asclelbas.b $e |- B = ( Base ` F ) $.
asclelbas.w $e |- ( ph -> W e. AssAlg ) $.
asclelbas.c $e |- ( ph -> C e. B ) $.
$( Lifted scalars are in the base set of the algebra. (Contributed by Zhi
Wang, 11-Sep-2025.) $)
asclelbas $p |- ( ph -> ( A ` C ) e. ( Base ` W ) ) $=
( cfv cur cvsca co cbs wcel wceq eqid syl asclval casa clmod assalmod crg
assaring ringidcl 3syl lmodvscld eqeltrd ) ADBLZDFMLZFNLZOZFPLZADCQUKUNRK
BUMULECFDGHIUMSZULSZUATADUMECUOFULUOSZHUPIAFUBQZFUCQJFUDTKAUSFUEQULUOQJFU
FUOFULURUQUGUHUIUJ $.

${
$d A x $. $d C x $. $d M x $. $d W x $. $d ph x $.
asclcntr.m $e |- M = ( mulGrp ` W ) $.
$( The algebra scalars function maps into the center of the algebra.
Equivalently, a lifted scalar is a center of the algebra.
(Contributed by Zhi Wang, 11-Sep-2025.) $)
asclcntr $p |- ( ph -> ( A ` C ) e. ( Cntr ` M ) ) $=
( vx cbs cfv eqid wcel co adantr ccntr asclelbas cv wa casa cmulr simpr
wceq w3a cvsca asclmul1 asclmul2 eqtr4d syl3anc elmgpcntrd ) ANGOPZGFDB
PZFUAPZUPQZMURQABCDEGHIJKLUBANUCZUPRZUDGUERZDCRZVAUQUTGUFPZSZUTUQVDSZUH
AVBVAKTAVCVALTAVAUGVBVCVAUIVEDUTGUJPZSVFBDVGVDECUPGUTHIJUSVDQZVGQZUKBDV
GVDECUPGUTHIJUSVHVIULUMUNUO $.
$}

${
asclcom.m $e |- .* = ( .r ` F ) $.
asclcom.d $e |- ( ph -> D e. B ) $.
$( Scalars are commutative after being lifted.

However, the scalars themselves are not necessarily commutative if the
algebra is not a faithful module. For example, Let ` F ` be the 2 by
2 upper triangular matrix algebra over a commutative ring ` W ` . It
is provable that ` F ` is in general non-commutative. Define scalar
multiplication ` C .x. X ` as multipying the top-left entry, which is
a "vector" element of ` W ` , of the "scalar" ` C ` , which is now an
upper triangular matrix, with the "vector" ` X e. ( Base `` W ) ` .

Equivalently, the algebra scalars function is not necessarily
injective unless the algebra is faithful. Therefore, all "scalar
injection" was renamed.

Alternate proof involves ~ assa2ass , ~ assa2ass2 , and ~ asclval , by
setting ` X ` and ` Y ` the multiplicative identity of the algebra.

(Contributed by Zhi Wang, 11-Sep-2025.) $)
asclcom $p |- ( ph -> ( A ` ( C .* D ) ) = ( A ` ( D .* C ) ) ) $=
( cfv co wcel wceq eqid cmulr cbs asclelbas w3a cvsca asclmul1 asclmul2
casa eqtr4d syl3anc ascldimul 3eqtr4d ) ADBPZEBPZHUAPZQZUNUMUOQZDEGQBPZ
EDGQBPZAHUHRZDCRZUNHUBPZRZUPUQSLMABCEFHIJKLOUCUTVAVCUDUPDUNHUEPZQUQBDVD
UOFCVBHUNIJKVBTZUOTZVDTZUFBDVDUOFCVBHUNIJKVEVFVGUGUIUJAUTVAECRZURUPSLMO
BDEGUOFCHIJKVFNUKUJAUTVHVAUSUQSLOMBEDGUOFCHIJKVFNUKUJUL $.
$}
$}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Categories
Expand Down