Skip to content
Merged
Show file tree
Hide file tree
Changes from 38 commits
Commits
Show all changes
39 commits
Select commit Hold shift + click to select a range
07d7d4b
[add] assa2ass2; [shorten] assa2ass
zwang123 Sep 11, 2025
f3bbb42
[add] asclcom
zwang123 Sep 11, 2025
32c0f68
[add] elmgpcntrd
zwang123 Sep 11, 2025
23315ff
[prove] asclcntr; [add] asclelbas
zwang123 Sep 11, 2025
cd896ee
[minimize] asclcom
zwang123 Sep 11, 2025
1314c60
[delete] assascacom and assascacrng
zwang123 Sep 11, 2025
965747d
[improve] explanation of asclcom
zwang123 Sep 11, 2025
c24ecf9
[rename] structure map of associative algebra might be non-injective;…
zwang123 Sep 11, 2025
08e472b
[add] upcic (empty proof), upciclem1
zwang123 Sep 16, 2025
f43b615
[change] upciclem1: var change
zwang123 Sep 16, 2025
25c0084
[add] isisod; [prove] upcic; [propose] upciclem2; [move] reueqdv to main
zwang123 Sep 16, 2025
1994800
[add] funcrcl2, funcrcl3; [update] upcic, upciclem2
zwang123 Sep 17, 2025
d7d8534
[shorten] upcic with funcrcl2
zwang123 Sep 17, 2025
11cf071
[fix] functor
zwang123 Sep 17, 2025
5fb5705
[add] funcel1; [propose] funcel2
zwang123 Sep 17, 2025
f3d5e6c
Revert "[add] funcel1; [propose] funcel2"
zwang123 Sep 17, 2025
99ca29c
[prove] upciclem2
zwang123 Sep 17, 2025
281e9e2
[remove] upciclem2.n; [reformat] hypotheses; [trivial] formatting
zwang123 Sep 17, 2025
4d9a170
[trivial] formatting
zwang123 Sep 17, 2025
dcd187f
[add] a section for Universal property
zwang123 Sep 18, 2025
89447e9
[add] upeu
zwang123 Sep 19, 2025
83d5dc0
[fix] upeu description
zwang123 Sep 19, 2025
39d58c8
[add] upeu2lem, reuxfr1dd, upciclem2; [shorten] upciclem3; [propose] …
zwang123 Sep 19, 2025
869b159
[prove] upeu2
zwang123 Sep 19, 2025
2397a86
[move] reuxfr1dd; [fix] upciclem1 description
zwang123 Sep 20, 2025
bc35cc1
[move and fix] upeu2lem and description and line length
zwang123 Sep 20, 2025
b2d0871
Merge branch 'develop' into upcic
zwang123 Sep 20, 2025
c7d5ff6
[propose] oppgtoppc
zwang123 Sep 21, 2025
5c7cc39
[fix] oppgtoppc; [formatting]
zwang123 Sep 21, 2025
d70d546
[add] oppgoppchom
zwang123 Sep 21, 2025
737ef22
[add] oppgoppcco
zwang123 Sep 21, 2025
b7569f3
[add] oppgoppcid
zwang123 Sep 21, 2025
0b4c1d6
[add] oppgoppc comments; [fix] format
zwang123 Sep 22, 2025
b73bbcc
[add] thinccisod, oduoppcbas; [propose] oduoppcciso, oduoppc, oduoppccom
zwang123 Sep 22, 2025
161ed10
[move] oduprs from AV's mathbox to main
zwang123 Sep 22, 2025
28b800e
[prove] oduoppcciso
zwang123 Sep 22, 2025
4628495
Merge branch 'develop' into mndtc
zwang123 Sep 23, 2025
45cba14
Merge branch 'develop' into mndtc
zwang123 Sep 28, 2025
e275030
[fix] oduprs from TA's mathbox
zwang123 Sep 30, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions changes-set.txt
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,7 @@ make a github issue.)
DONE:
Date Old New Notes
23-Sep-25 elfzolem1 [same] moved from GS's mathbox to main set.mm
22-Sep-25 oduprs [same] Moved from AV's mathbox to main set.mm
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is from TA's mathbox!

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh my bad... Fixed now.

17-Sep-25 psdmul [same] Removed unneeded hypothesis
17-Sep-25 psdvsca [same] Removed unneeded hypothesis
17-Sep-25 psdadd [same] Removed unneeded hypothesis
Expand Down
207 changes: 178 additions & 29 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -225822,6 +225822,25 @@ that F(A') is isomorphic to B'.". Therefore, the category of sets and
CLMZDFCLZRSMDDCLTUANABCDEFGHOPQ $.
$}

${
$d x y z D $. $d x y z K $.
oduprs.d $e |- D = ( ODual ` K ) $.
$( Being a proset is a self-dual property. (Contributed by Thierry Arnoux,
13-Sep-2018.) $)
oduprs $p |- ( K e. Proset -> D e. Proset ) $=
( vx vy vz cproset wcel cvv cv wbr wa wral isprs r19.21bi vex brcnv an32s
wi ralrimiva cple cfv ccnv cbs eqid simprbi simpld sylibr simprd anbi12ci
ex imp 3imtr4g jca codu fvexi jctil odubas oduleval ) BGHZAIHZDJZVBBUAUBZ
UCZKZVBEJZVDKZVFFJZVDKZLZVBVHVDKZSZLZFBUDUBZMZEVNMZDVNMZLAGHUTVQVAUTVPDVN
UTVBVNHZLZVOEVNVSVFVNHZLZVMFVNWAVHVNHZLZVEVLWCVBVBVCKZVEWCWDVBVFVCKVFVHVC
KLVBVHVCKSZWAWDWELZFVNVSWFFVNMZEVNUTWGEVNMZDVNUTBIHZWHDVNMDEFVNBVCVNUEZVC
UEZNUFOOOUGVBVBVCDPZWLQUHWCVHVFVCKZVFVBVCKZLZVHVBVCKZVJVKVSWBVTWOWPSZVSWB
LVTWQUTWBVRVTWQSUTWBLZVRLVTWQWRVTVRWQWRVTLZVRLVHVHVCKZWQWSWTWQLZDVNWRXADV
NMZEVNUTXBEVNMZFVNUTWIXCFVNMFEDVNBVCWJWKNUFOOOUIRUKRULRVGWNVIWMVBVFVCWLEP
ZQVFVHVCXDFPZQUJVBVHVCWLXEQUMUNTTTABUOCUPUQDEFVNAVDVNABCWJURAVCBCWKUSNUH
$.
$}

${
$d K f b r x y z $. $d B f b r x y z $. $d .<_ f b r x y z $.
$d X x y z $. $d Y x y z $.
Expand Down Expand Up @@ -509901,25 +509920,6 @@ Splicing words (substring replacement)
RTVLWKVPVRVTXRTVEVLWKVPVOVTXRTVFVEQQQVGVHEFGWFVMVPWFNVPNUOVI $.
$}

${
$d x y z D $. $d x y z K $.
oduprs.d $e |- D = ( ODual ` K ) $.
$( Being a proset is a self-dual property. (Contributed by Thierry Arnoux,
13-Sep-2018.) $)
oduprs $p |- ( K e. Proset -> D e. Proset ) $=
( vx vy vz cproset wcel cvv cv wbr wa wral isprs r19.21bi vex brcnv an32s
wi ralrimiva cple cfv ccnv cbs eqid simprbi simpld sylibr simprd anbi12ci
ex imp 3imtr4g jca codu fvexi jctil odubas oduleval ) BGHZAIHZDJZVBBUAUBZ
UCZKZVBEJZVDKZVFFJZVDKZLZVBVHVDKZSZLZFBUDUBZMZEVNMZDVNMZLAGHUTVQVAUTVPDVN
UTVBVNHZLZVOEVNVSVFVNHZLZVMFVNWAVHVNHZLZVEVLWCVBVBVCKZVEWCWDVBVFVCKVFVHVC
KLVBVHVCKSZWAWDWELZFVNVSWFFVNMZEVNUTWGEVNMZDVNUTBIHZWHDVNMDEFVNBVCVNUEZVC
UEZNUFOOOUGVBVBVCDPZWLQUHWCVHVFVCKZVFVBVCKZLZVHVBVCKZVJVKVSWBVTWOWPSZVSWB
LVTWQUTWBVRVTWQSUTWBLZVRLVTWQWRVTVRWQWRVTLZVRLVHVHVCKZWQWSWTWQLZDVNWRXADV
NMZEVNUTXBEVNMZFVNUTWIXCFVNMFEDVNBVCWJWKNUFOOOUIRUKRULRVGWNVIWMVBVFVCWLEP
ZQVFVHVCXDFPZQUJVBVHVCWLXEQUMUNTTTABUOCUPUQDEFVNAVDVNABCWJURAVCBCWKUSNUH
$.
$}

${
posrasymb.b $e |- B = ( Base ` K ) $.
posrasymb.l $e |- .<_ = ( ( le ` K ) i^i ( B X. B ) ) $.
Expand Down Expand Up @@ -838460,6 +838460,38 @@ preorders induced by the categories are considered ( ~ catprs2 ).
LUUGUUJUWHYLYMYOYPYQFGUUJUWHXCYRXKXMXLYSYT $.
$}

${
$d C f x y $. $d F f x y $. $d H f x y $. $d J f x y $. $d R f x y $.
$d S f $. $d U f $. $d V f $. $d X f x y $. $d Y f x y $.
$d f ph x y $.
thinccisod.c $e |- C = ( CatCat ` U ) $.
thinccisod.r $e |- R = ( Base ` X ) $.
thinccisod.s $e |- S = ( Base ` Y ) $.
thinccisod.h $e |- H = ( Hom ` X ) $.
thinccisod.j $e |- J = ( Hom ` Y ) $.
thinccisod.u $e |- ( ph -> U e. V ) $.
thinccisod.x $e |- ( ph -> X e. U ) $.
thinccisod.y $e |- ( ph -> Y e. U ) $.
thinccisod.xt $e |- ( ph -> X e. ThinCat ) $.
thinccisod.yt $e |- ( ph -> Y e. ThinCat ) $.
thinccisod.f $e |- ( ph -> F : R -1-1-onto-> S ) $.
thinccisod.1 $e |- ( ( ph /\ ( x e. R /\ y e. R ) ) ->
( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) $.
$( Two thin categories are isomorphic if the induced preorders are
order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33.
(Contributed by Zhi Wang, 22-Sep-2025.) $)
thinccisod $p |- ( ph -> X ( ~=c ` C ) Y ) $=
( vf ccic cfv wbr cv co c0 wceq wb wral wf1o wa wex cvv wf f1of syl fvexd
cbs eqeltrid fexd ralrimivva fveq1 oveq12d eqeq1d bibi2d 2ralbidv anbi12d
jca f1oeq1 spcedv eqid ccat cin thinccd catcbas eleqtrrd thincciso mpbird
elind ) ALMDUGUHUIBUJZCUJZIUKULUMZWFUFUJZUHZWGWIUHZJUKZULUMZUNZCEUOBEUOZE
FWIUPZUQZUFURAWQWHWFHUHZWGHUHZJUKZULUMZUNZCEUOBEUOZEFHUPZUQUFUSHAEFUSHAXD
EFHUTUDEFHVAVBAELVDUHUSOALVDVCVEVFAXCXDAXBBCEEUEVGUDVNWIHUMZWOXCWPXDXEWNX
BBCEEXEWMXAWHXEWLWTULXEWJWRWKWSJWFWIHVHWGWIHVHVIVJVKVLEFWIHVOVMVPABCDVDUH
ZDEFGUFIJKLMNXFVQZOPQRSALGVRVSZXFAGVRLTALUBVTWEAXFDGKNXGSWAZWBAMXHXFAGVRM
UAAMUCVTWEXIWBUBUCWCWD $.
$}

${
$d C f x y $.
$( Any structure with an empty set of objects is a thin category.
Expand Down Expand Up @@ -838847,8 +838879,64 @@ mean the category of preordered sets (classes). However, "ProsetToCat"
GUKZPQOAULRZPSTAUMRZUNUOVJPQUPUQCVJURUSVLAVJSTZVIVLVKCUTVSVKCVBCVJVCVDA
VIVSAGHFDQPVPVQVRVEVFVGVH $.
$}

oduoppcbas.d $e |- ( ph -> D = ( ProsetToCat ` ( ODual ` K ) ) ) $.
oduoppcbas.o $e |- O = ( oppCat ` C ) $.
$( The dual of a preordered set and the opposite category have the same set
of objects. (Contributed by Zhi Wang, 22-Sep-2025.) $)
oduoppcbas $p |- ( ph -> ( Base ` D ) = ( Base ` O ) ) $=
( cbs cfv codu cproset wcel eqid oduprs syl wceq odubas prstcbas oppcbas
a1i eqcomd eqtrdi ) ACJKZBJKZEJKAUEBDFGADJKZUEAUGCDLKZHADMNUHMNGUHDUHOZPQ
UGUHJKRAUGUHDUIUGOSUBTUCTUFBEIUFOUAUD $.

${
$d C x y $. $d D x y $. $d K x y $. $d O x y $. $d U x y $.
$d V x y $. $d ph x y $.
oduoppcciso.u $e |- ( ph -> U e. V ) $.
oduoppcciso.d $e |- ( ph -> D e. U ) $.
oduoppcciso.o $e |- ( ph -> O e. U ) $.
$( The dual of a preordered set and the opposite category are
category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed
by Zhi Wang, 22-Sep-2025.) $)
oduoppcciso $p |- ( ph -> D ( ~=c ` ( CatCat ` U ) ) O ) $=
( cfv eqid wcel co c0 wceq vx vy ccatc cbs cid cres chom cproset oduprs
codu prstcthin cthinc oppcthin wf1o f1oi oduoppcbas f1oeq3d mpbii cv wa
syl cple wbr wne wb oduleg adantl cprstc adantr eqidd prstcleval simprl
simprr prstchom oppcbas eqtr4di eleqtrd 3bitr3d fvresi ad2antrl oveq12d
necon4bid ad2antll oppchom eqtrdi eqeq1d bitr4d thinccisod ) AUAUBDUCOZ
CUDOZFUDOZDUEWJUFZCUGOZFUGOZGCFWIPWJPWKPWMPWNPLMNACEUJOZJAEUHQZWOUHQZIW
OEWOPZUIZVAUKABULQFULQABEHIUKBFKUMVAAWJWJWLUNWJWKWLUNWJUOAWJWKWJWLABCEF
HIJKUPZUQURAUAUSZWJQZUBUSZWJQZUTZUTZXAXCWMRZSTXCXABUGOZRZSTXAWLOZXCWLOZ
WNRZSTXFXGSXISXFXAXCWOVBOZVCZXCXAEVBOZVCZXGSVDXISVDXEXNXPVEAXAXCWOXMXOE
WJWJWRXOPXMPVFVGXFCWMWOXMXAXCACWOVHOTXEJVIZXFWPWQAWPXEIVIZWSVAZXFCWOXMX
QXSXFXMVJVKXFWMVJAXBXDVLZAXBXDVMZVNXFBXHEXOXCXAABEVHOTXEHVIZXRXFBEXOYBX
RXFXOVJVKXFXHVJXFXCWJBUDOZYAAWJYCTXEAWJWKYCWTYCBFKYCPVOVPVIZVQXFXAWJYCX
TYDVQVNVRWBXFXLXISXFXLXAXCWNRXIXFXJXAXKXCWNXBXJXATAXDWJXAVSVTXDXKXCTAXB
WJXCVSWCWABXHFXAXCXHPKWDWEWFWGWH $.
$}

$(
The following cannot be proved without using discouraged theorems such as
~ prstchomval .
@( The dual of a preordered set and the opposite category have the same set
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think it should be proved nevertheless, and can be marked as "discouraged", too.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am proposing it here and maybe do it later. (maybe...)

of objects, morphisms, and compositions. Example 3.6(1) of [Adamek]
p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @)
oduoppc @p |- ( ph -> ( ( Homf ` D ) = ( Homf ` O )
/\ ( comf ` D ) = ( comf ` O ) ) ) @=
( ) ? @.
$)
$}

$(
The following cannot be proved without using discouraged theorems such as
~ prstchomval .
@( The correspondence between order dual and opposite category. Example
3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @)
oduoppccom @p |- ( ProsetToCat o. ( ODual |` Proset ) )
= ( ODual o. ( oppCat o. ProsetToCat ) ) @=
( ) ? @.
$)

${
$d B x y $. $d C x y $. $d ph x y $.
postc.c $e |- ( ph -> C = ( ProsetToCat ` K ) ) $.
Expand Down Expand Up @@ -839037,16 +839125,77 @@ structure becomes the object here (see ~ mndtcbasval ), instead of just
( vy ccat wcel ccid cfv cbs c0g cmpt wceq mndtccatid simpld ) ABGHBIJFBKJ
CLJMNAFBCDEOP $.

mndtcid.b $e |- ( ph -> B = ( Base ` C ) ) $.
mndtcid.x $e |- ( ph -> X e. B ) $.
mndtcid.i $e |- ( ph -> .1. = ( Id ` C ) ) $.
$( The identity morphism, or identity arrow, of the category built from a
monoid is the identity element of the monoid. (Contributed by Zhi Wang,
22-Sep-2024.) $)
mndtcid $p |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) $=
( vx c0g cfv cbs cvv ccid cmpt ccat wceq mndtccatid simprd eqtrd cv eqidd
wcel wa eleqtrd fvexd fvmptd ) ALFEMNZUKCONZDPADCQNZLULUKRZKACSUFUMUNTALC
EGHUAUBUCALUDFTUGUKUEAFBULJIUHAEMUIUJ $.
${
mndtcid.b $e |- ( ph -> B = ( Base ` C ) ) $.
mndtcid.x $e |- ( ph -> X e. B ) $.
mndtcid.i $e |- ( ph -> .1. = ( Id ` C ) ) $.
$( The identity morphism, or identity arrow, of the category built from a
monoid is the identity element of the monoid. (Contributed by Zhi
Wang, 22-Sep-2024.) $)
mndtcid $p |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) $=
( vx c0g cfv cbs cvv ccid cmpt ccat wceq wcel mndtccatid eqtrd cv eqidd
simprd wa eleqtrd fvexd fvmptd ) ALFEMNZUKCONZDPADCQNZLULUKRZKACSUAUMUN
TALCEGHUBUFUCALUDFTUGUKUEAFBULJIUHAEMUIUJ $.
$}

${
oppgoppchom.d $e |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) $.
oppgoppchom.o $e |- O = ( oppCat ` C ) $.
oppgoppchom.x $e |- ( ph -> X e. ( Base ` D ) ) $.
oppgoppchom.y $e |- ( ph -> Y e. ( Base ` O ) ) $.
${
oppgoppchom.h $e |- ( ph -> H = ( Hom ` D ) ) $.
oppgoppchom.j $e |- ( ph -> J = ( Hom ` O ) ) $.
$( The converted opposite monoid has the same hom-set as that of the
opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed
by Zhi Wang, 21-Sep-2025.) $)
oppgoppchom $p |- ( ph -> ( X H X ) = ( Y J Y ) ) $=
( co cfv cbs chom coppg wceq eqid oppgbas a1i oppcbas eqcomi mndtchom
eqidd cmnd wcel oppgmnd syl 3eqtr4rd oppchom eqtr4di oveqd eqtr4d ) A
HHDRZIIGUASZRZIIERAUTIIBUASZRZVBAFTSZFUBSZTSZVDUTVEVGUCAVEFVFVFUDZVEU
DUEUFAGTSZBVCFIIJKVIBTSZUCAVJVIVJBGMVJUDUGUHUFOOAVCUJUIACTSZCDVFHHLAF
UKULVFUKULKFVFVHUMUNAVKUJNNPUIUOBVCGIIVCUDMUPUQAEVAIIQURUS $.
$}

${
oppgoppcco.o $e |- ( ph -> .x. = ( comp ` D ) ) $.
oppgoppcco.x $e |- ( ph -> .xb = ( comp ` O ) ) $.
$( The converted opposite monoid has the same composition as that of
the opposite category. Example 3.6(2) of [Adamek] p. 25.
(Contributed by Zhi Wang, 22-Sep-2025.) $)
oppgoppcco $p |- ( ph -> ( <. X , X >. .x. X ) =
( <. Y , Y >. .xb Y ) ) $=
( co cfv eqid cop cco ctpos cplusg cbs wceq oppcbas a1i eqidd mndtcco
eqcomi tposeqd oppccofval coppg cmnd wcel oppgmnd oppgplusfval eqtrdi
syl 3eqtr4rd oveqd eqtr4d ) AHHUAHERZIIUAZIGUBSZRZVEIDRAVEIBUBSZRZUCF
UDSZUCZVGVDAVIVJAGUESZBVHFIIIJKVLBUESZUFAVMVLVMBGMVMTUGUKZUHOOOAVHUIU
JULAVLBVHGIIIVNVHTMOOOUMAVDFUNSZUDSZVKACUESZCEVOHHHLAFUOUPVOUOUPKFVOV
OTZUQUTAVQUINNNPUJVJVPFVOVJTVRVPTURUSVAADVFVEIQVBVC $.
$}

$( The converted opposite monoid has the same identity morphism as that
of the opposite category. Example 3.6(2) of [Adamek] p. 25.
(Contributed by Zhi Wang, 22-Sep-2025.) $)
oppgoppcid $p |- ( ph -> ( ( Id ` D ) ` X ) = ( ( Id ` O ) ` Y ) ) $=
( c0g cfv ccid wceq eqid cbs wcel coppg oppgid a1i eqcomi ccat mndtccat
oppcbas oppcid syl mndtcid cmnd oppgmnd eqidd 3eqtr4rd ) ADNOZDUAOZNOZG
EPOZOFCPOZOUOUQQADUPUOUPRZUORUBUCAESOZBURDGHIVABSOZQAVBVAVBBEKVBRUGUDUC
MABUETURBPOZQABDHIUFVCBEKVCRUHUIUJACSOZCUSUPFJADUKTUPUKTIDUPUTULUIAVDUM
LAUSUMUJUN $.
$}

$(
The following is not true yet because base set of converted category
depends on the original monoid in the current definition.
@{
oppgtoppc.o @e |- O = ( oppG ` M ) @.
oppgtoppc.d @e |- ( ph -> D = ( MndToCat ` O ) ) @.
@( An opposite monoid is converted to an opposite category. Example
3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @)
oppgtoppc @p |- ( ph -> D = ( oppCat ` C ) ) @=
( ) ? @.
@}
$)
$}

${
Expand Down