-
Notifications
You must be signed in to change notification settings - Fork 100
Correspondence between ODual(order dual)/oppG(opposite monoid) and oppCat (opposite category) #5022
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 38 commits
Commits
Show all changes
39 commits
Select commit
Hold shift + click to select a range
07d7d4b
[add] assa2ass2; [shorten] assa2ass
zwang123 f3bbb42
[add] asclcom
zwang123 32c0f68
[add] elmgpcntrd
zwang123 23315ff
[prove] asclcntr; [add] asclelbas
zwang123 cd896ee
[minimize] asclcom
zwang123 1314c60
[delete] assascacom and assascacrng
zwang123 965747d
[improve] explanation of asclcom
zwang123 c24ecf9
[rename] structure map of associative algebra might be non-injective;…
zwang123 08e472b
[add] upcic (empty proof), upciclem1
zwang123 f43b615
[change] upciclem1: var change
zwang123 25c0084
[add] isisod; [prove] upcic; [propose] upciclem2; [move] reueqdv to main
zwang123 1994800
[add] funcrcl2, funcrcl3; [update] upcic, upciclem2
zwang123 d7d8534
[shorten] upcic with funcrcl2
zwang123 11cf071
[fix] functor
zwang123 5fb5705
[add] funcel1; [propose] funcel2
zwang123 f3d5e6c
Revert "[add] funcel1; [propose] funcel2"
zwang123 99ca29c
[prove] upciclem2
zwang123 281e9e2
[remove] upciclem2.n; [reformat] hypotheses; [trivial] formatting
zwang123 4d9a170
[trivial] formatting
zwang123 dcd187f
[add] a section for Universal property
zwang123 89447e9
[add] upeu
zwang123 83d5dc0
[fix] upeu description
zwang123 39d58c8
[add] upeu2lem, reuxfr1dd, upciclem2; [shorten] upciclem3; [propose] …
zwang123 869b159
[prove] upeu2
zwang123 2397a86
[move] reuxfr1dd; [fix] upciclem1 description
zwang123 bc35cc1
[move and fix] upeu2lem and description and line length
zwang123 b2d0871
Merge branch 'develop' into upcic
zwang123 c7d5ff6
[propose] oppgtoppc
zwang123 5c7cc39
[fix] oppgtoppc; [formatting]
zwang123 d70d546
[add] oppgoppchom
zwang123 737ef22
[add] oppgoppcco
zwang123 b7569f3
[add] oppgoppcid
zwang123 0b4c1d6
[add] oppgoppc comments; [fix] format
zwang123 b73bbcc
[add] thinccisod, oduoppcbas; [propose] oduoppcciso, oduoppc, oduoppccom
zwang123 161ed10
[move] oduprs from AV's mathbox to main
zwang123 28b800e
[prove] oduoppcciso
zwang123 4628495
Merge branch 'develop' into mndtc
zwang123 45cba14
Merge branch 'develop' into mndtc
zwang123 e275030
[fix] oduprs from TA's mathbox
zwang123 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -225822,6 +225822,25 @@ that F(A') is isomorphic to B'.". Therefore, the category of sets and | |
CLMZDFCLZRSMDDCLTUANABCDEFGHOPQ $. | ||
$} | ||
|
||
${ | ||
$d x y z D $. $d x y z K $. | ||
oduprs.d $e |- D = ( ODual ` K ) $. | ||
$( Being a proset is a self-dual property. (Contributed by Thierry Arnoux, | ||
13-Sep-2018.) $) | ||
oduprs $p |- ( K e. Proset -> D e. Proset ) $= | ||
( vx vy vz cproset wcel cvv cv wbr wa wral isprs r19.21bi vex brcnv an32s | ||
wi ralrimiva cple cfv ccnv cbs eqid simprbi simpld sylibr simprd anbi12ci | ||
ex imp 3imtr4g jca codu fvexi jctil odubas oduleval ) BGHZAIHZDJZVBBUAUBZ | ||
UCZKZVBEJZVDKZVFFJZVDKZLZVBVHVDKZSZLZFBUDUBZMZEVNMZDVNMZLAGHUTVQVAUTVPDVN | ||
UTVBVNHZLZVOEVNVSVFVNHZLZVMFVNWAVHVNHZLZVEVLWCVBVBVCKZVEWCWDVBVFVCKVFVHVC | ||
KLVBVHVCKSZWAWDWELZFVNVSWFFVNMZEVNUTWGEVNMZDVNUTBIHZWHDVNMDEFVNBVCVNUEZVC | ||
UEZNUFOOOUGVBVBVCDPZWLQUHWCVHVFVCKZVFVBVCKZLZVHVBVCKZVJVKVSWBVTWOWPSZVSWB | ||
LVTWQUTWBVRVTWQSUTWBLZVRLVTWQWRVTVRWQWRVTLZVRLVHVHVCKZWQWSWTWQLZDVNWRXADV | ||
NMZEVNUTXBEVNMZFVNUTWIXCFVNMFEDVNBVCWJWKNUFOOOUIRUKRULRVGWNVIWMVBVFVCWLEP | ||
ZQVFVHVCXDFPZQUJVBVHVCWLXEQUMUNTTTABUOCUPUQDEFVNAVDVNABCWJURAVCBCWKUSNUH | ||
$. | ||
$} | ||
|
||
${ | ||
$d K f b r x y z $. $d B f b r x y z $. $d .<_ f b r x y z $. | ||
$d X x y z $. $d Y x y z $. | ||
|
@@ -509901,25 +509920,6 @@ Splicing words (substring replacement) | |
RTVLWKVPVRVTXRTVEVLWKVPVOVTXRTVFVEQQQVGVHEFGWFVMVPWFNVPNUOVI $. | ||
$} | ||
|
||
${ | ||
$d x y z D $. $d x y z K $. | ||
oduprs.d $e |- D = ( ODual ` K ) $. | ||
$( Being a proset is a self-dual property. (Contributed by Thierry Arnoux, | ||
13-Sep-2018.) $) | ||
oduprs $p |- ( K e. Proset -> D e. Proset ) $= | ||
( vx vy vz cproset wcel cvv cv wbr wa wral isprs r19.21bi vex brcnv an32s | ||
wi ralrimiva cple cfv ccnv cbs eqid simprbi simpld sylibr simprd anbi12ci | ||
ex imp 3imtr4g jca codu fvexi jctil odubas oduleval ) BGHZAIHZDJZVBBUAUBZ | ||
UCZKZVBEJZVDKZVFFJZVDKZLZVBVHVDKZSZLZFBUDUBZMZEVNMZDVNMZLAGHUTVQVAUTVPDVN | ||
UTVBVNHZLZVOEVNVSVFVNHZLZVMFVNWAVHVNHZLZVEVLWCVBVBVCKZVEWCWDVBVFVCKVFVHVC | ||
KLVBVHVCKSZWAWDWELZFVNVSWFFVNMZEVNUTWGEVNMZDVNUTBIHZWHDVNMDEFVNBVCVNUEZVC | ||
UEZNUFOOOUGVBVBVCDPZWLQUHWCVHVFVCKZVFVBVCKZLZVHVBVCKZVJVKVSWBVTWOWPSZVSWB | ||
LVTWQUTWBVRVTWQSUTWBLZVRLVTWQWRVTVRWQWRVTLZVRLVHVHVCKZWQWSWTWQLZDVNWRXADV | ||
NMZEVNUTXBEVNMZFVNUTWIXCFVNMFEDVNBVCWJWKNUFOOOUIRUKRULRVGWNVIWMVBVFVCWLEP | ||
ZQVFVHVCXDFPZQUJVBVHVCWLXEQUMUNTTTABUOCUPUQDEFVNAVDVNABCWJURAVCBCWKUSNUH | ||
$. | ||
$} | ||
|
||
${ | ||
posrasymb.b $e |- B = ( Base ` K ) $. | ||
posrasymb.l $e |- .<_ = ( ( le ` K ) i^i ( B X. B ) ) $. | ||
|
@@ -838460,6 +838460,38 @@ preorders induced by the categories are considered ( ~ catprs2 ). | |
LUUGUUJUWHYLYMYOYPYQFGUUJUWHXCYRXKXMXLYSYT $. | ||
$} | ||
|
||
${ | ||
$d C f x y $. $d F f x y $. $d H f x y $. $d J f x y $. $d R f x y $. | ||
$d S f $. $d U f $. $d V f $. $d X f x y $. $d Y f x y $. | ||
$d f ph x y $. | ||
thinccisod.c $e |- C = ( CatCat ` U ) $. | ||
thinccisod.r $e |- R = ( Base ` X ) $. | ||
thinccisod.s $e |- S = ( Base ` Y ) $. | ||
thinccisod.h $e |- H = ( Hom ` X ) $. | ||
thinccisod.j $e |- J = ( Hom ` Y ) $. | ||
thinccisod.u $e |- ( ph -> U e. V ) $. | ||
thinccisod.x $e |- ( ph -> X e. U ) $. | ||
thinccisod.y $e |- ( ph -> Y e. U ) $. | ||
thinccisod.xt $e |- ( ph -> X e. ThinCat ) $. | ||
thinccisod.yt $e |- ( ph -> Y e. ThinCat ) $. | ||
thinccisod.f $e |- ( ph -> F : R -1-1-onto-> S ) $. | ||
thinccisod.1 $e |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> | ||
( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) $. | ||
$( Two thin categories are isomorphic if the induced preorders are | ||
order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. | ||
(Contributed by Zhi Wang, 22-Sep-2025.) $) | ||
thinccisod $p |- ( ph -> X ( ~=c ` C ) Y ) $= | ||
( vf ccic cfv wbr cv co c0 wceq wb wral wf1o wa wex cvv wf f1of syl fvexd | ||
cbs eqeltrid fexd ralrimivva fveq1 oveq12d eqeq1d bibi2d 2ralbidv anbi12d | ||
jca f1oeq1 spcedv eqid ccat cin thinccd catcbas eleqtrrd thincciso mpbird | ||
elind ) ALMDUGUHUIBUJZCUJZIUKULUMZWFUFUJZUHZWGWIUHZJUKZULUMZUNZCEUOBEUOZE | ||
FWIUPZUQZUFURAWQWHWFHUHZWGHUHZJUKZULUMZUNZCEUOBEUOZEFHUPZUQUFUSHAEFUSHAXD | ||
EFHUTUDEFHVAVBAELVDUHUSOALVDVCVEVFAXCXDAXBBCEEUEVGUDVNWIHUMZWOXCWPXDXEWNX | ||
BBCEEXEWMXAWHXEWLWTULXEWJWRWKWSJWFWIHVHWGWIHVHVIVJVKVLEFWIHVOVMVPABCDVDUH | ||
ZDEFGUFIJKLMNXFVQZOPQRSALGVRVSZXFAGVRLTALUBVTWEAXFDGKNXGSWAZWBAMXHXFAGVRM | ||
UAAMUCVTWEXIWBUBUCWCWD $. | ||
$} | ||
|
||
${ | ||
$d C f x y $. | ||
$( Any structure with an empty set of objects is a thin category. | ||
|
@@ -838847,8 +838879,64 @@ mean the category of preordered sets (classes). However, "ProsetToCat" | |
GUKZPQOAULRZPSTAUMRZUNUOVJPQUPUQCVJURUSVLAVJSTZVIVLVKCUTVSVKCVBCVJVCVDA | ||
VIVSAGHFDQPVPVQVRVEVFVGVH $. | ||
$} | ||
|
||
oduoppcbas.d $e |- ( ph -> D = ( ProsetToCat ` ( ODual ` K ) ) ) $. | ||
oduoppcbas.o $e |- O = ( oppCat ` C ) $. | ||
$( The dual of a preordered set and the opposite category have the same set | ||
of objects. (Contributed by Zhi Wang, 22-Sep-2025.) $) | ||
oduoppcbas $p |- ( ph -> ( Base ` D ) = ( Base ` O ) ) $= | ||
( cbs cfv codu cproset wcel eqid oduprs syl wceq odubas prstcbas oppcbas | ||
a1i eqcomd eqtrdi ) ACJKZBJKZEJKAUEBDFGADJKZUEAUGCDLKZHADMNUHMNGUHDUHOZPQ | ||
UGUHJKRAUGUHDUIUGOSUBTUCTUFBEIUFOUAUD $. | ||
|
||
${ | ||
$d C x y $. $d D x y $. $d K x y $. $d O x y $. $d U x y $. | ||
$d V x y $. $d ph x y $. | ||
oduoppcciso.u $e |- ( ph -> U e. V ) $. | ||
oduoppcciso.d $e |- ( ph -> D e. U ) $. | ||
oduoppcciso.o $e |- ( ph -> O e. U ) $. | ||
$( The dual of a preordered set and the opposite category are | ||
category-isomorphic. Example 3.6(1) of [Adamek] p. 25. (Contributed | ||
by Zhi Wang, 22-Sep-2025.) $) | ||
oduoppcciso $p |- ( ph -> D ( ~=c ` ( CatCat ` U ) ) O ) $= | ||
( cfv eqid wcel co c0 wceq vx vy ccatc cbs cid cres chom cproset oduprs | ||
codu prstcthin cthinc oppcthin wf1o f1oi oduoppcbas f1oeq3d mpbii cv wa | ||
syl cple wbr wne wb oduleg adantl cprstc adantr eqidd prstcleval simprl | ||
simprr prstchom oppcbas eqtr4di eleqtrd 3bitr3d fvresi ad2antrl oveq12d | ||
necon4bid ad2antll oppchom eqtrdi eqeq1d bitr4d thinccisod ) AUAUBDUCOZ | ||
CUDOZFUDOZDUEWJUFZCUGOZFUGOZGCFWIPWJPWKPWMPWNPLMNACEUJOZJAEUHQZWOUHQZIW | ||
OEWOPZUIZVAUKABULQFULQABEHIUKBFKUMVAAWJWJWLUNWJWKWLUNWJUOAWJWKWJWLABCEF | ||
HIJKUPZUQURAUAUSZWJQZUBUSZWJQZUTZUTZXAXCWMRZSTXCXABUGOZRZSTXAWLOZXCWLOZ | ||
WNRZSTXFXGSXISXFXAXCWOVBOZVCZXCXAEVBOZVCZXGSVDXISVDXEXNXPVEAXAXCWOXMXOE | ||
WJWJWRXOPXMPVFVGXFCWMWOXMXAXCACWOVHOTXEJVIZXFWPWQAWPXEIVIZWSVAZXFCWOXMX | ||
QXSXFXMVJVKXFWMVJAXBXDVLZAXBXDVMZVNXFBXHEXOXCXAABEVHOTXEHVIZXRXFBEXOYBX | ||
RXFXOVJVKXFXHVJXFXCWJBUDOZYAAWJYCTXEAWJWKYCWTYCBFKYCPVOVPVIZVQXFXAWJYCX | ||
TYDVQVNVRWBXFXLXISXFXLXAXCWNRXIXFXJXAXKXCWNXBXJXATAXDWJXAVSVTXDXKXCTAXB | ||
WJXCVSWCWABXHFXAXCXHPKWDWEWFWGWH $. | ||
$} | ||
|
||
$( | ||
The following cannot be proved without using discouraged theorems such as | ||
~ prstchomval . | ||
@( The dual of a preordered set and the opposite category have the same set | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think it should be proved nevertheless, and can be marked as "discouraged", too. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I am proposing it here and maybe do it later. (maybe...) |
||
of objects, morphisms, and compositions. Example 3.6(1) of [Adamek] | ||
p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @) | ||
oduoppc @p |- ( ph -> ( ( Homf ` D ) = ( Homf ` O ) | ||
/\ ( comf ` D ) = ( comf ` O ) ) ) @= | ||
( ) ? @. | ||
$) | ||
$} | ||
|
||
$( | ||
The following cannot be proved without using discouraged theorems such as | ||
~ prstchomval . | ||
@( The correspondence between order dual and opposite category. Example | ||
3.6(1) of [Adamek] p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @) | ||
oduoppccom @p |- ( ProsetToCat o. ( ODual |` Proset ) ) | ||
= ( ODual o. ( oppCat o. ProsetToCat ) ) @= | ||
( ) ? @. | ||
$) | ||
|
||
${ | ||
$d B x y $. $d C x y $. $d ph x y $. | ||
postc.c $e |- ( ph -> C = ( ProsetToCat ` K ) ) $. | ||
|
@@ -839037,16 +839125,77 @@ structure becomes the object here (see ~ mndtcbasval ), instead of just | |
( vy ccat wcel ccid cfv cbs c0g cmpt wceq mndtccatid simpld ) ABGHBIJFBKJ | ||
CLJMNAFBCDEOP $. | ||
|
||
mndtcid.b $e |- ( ph -> B = ( Base ` C ) ) $. | ||
mndtcid.x $e |- ( ph -> X e. B ) $. | ||
mndtcid.i $e |- ( ph -> .1. = ( Id ` C ) ) $. | ||
$( The identity morphism, or identity arrow, of the category built from a | ||
monoid is the identity element of the monoid. (Contributed by Zhi Wang, | ||
22-Sep-2024.) $) | ||
mndtcid $p |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) $= | ||
( vx c0g cfv cbs cvv ccid cmpt ccat wceq mndtccatid simprd eqtrd cv eqidd | ||
wcel wa eleqtrd fvexd fvmptd ) ALFEMNZUKCONZDPADCQNZLULUKRZKACSUFUMUNTALC | ||
EGHUAUBUCALUDFTUGUKUEAFBULJIUHAEMUIUJ $. | ||
${ | ||
mndtcid.b $e |- ( ph -> B = ( Base ` C ) ) $. | ||
mndtcid.x $e |- ( ph -> X e. B ) $. | ||
mndtcid.i $e |- ( ph -> .1. = ( Id ` C ) ) $. | ||
$( The identity morphism, or identity arrow, of the category built from a | ||
monoid is the identity element of the monoid. (Contributed by Zhi | ||
Wang, 22-Sep-2024.) $) | ||
mndtcid $p |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) $= | ||
( vx c0g cfv cbs cvv ccid cmpt ccat wceq wcel mndtccatid eqtrd cv eqidd | ||
simprd wa eleqtrd fvexd fvmptd ) ALFEMNZUKCONZDPADCQNZLULUKRZKACSUAUMUN | ||
TALCEGHUBUFUCALUDFTUGUKUEAFBULJIUHAEMUIUJ $. | ||
$} | ||
|
||
${ | ||
oppgoppchom.d $e |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) $. | ||
oppgoppchom.o $e |- O = ( oppCat ` C ) $. | ||
oppgoppchom.x $e |- ( ph -> X e. ( Base ` D ) ) $. | ||
oppgoppchom.y $e |- ( ph -> Y e. ( Base ` O ) ) $. | ||
${ | ||
oppgoppchom.h $e |- ( ph -> H = ( Hom ` D ) ) $. | ||
oppgoppchom.j $e |- ( ph -> J = ( Hom ` O ) ) $. | ||
$( The converted opposite monoid has the same hom-set as that of the | ||
opposite category. Example 3.6(2) of [Adamek] p. 25. (Contributed | ||
by Zhi Wang, 21-Sep-2025.) $) | ||
oppgoppchom $p |- ( ph -> ( X H X ) = ( Y J Y ) ) $= | ||
( co cfv cbs chom coppg wceq eqid oppgbas a1i oppcbas eqcomi mndtchom | ||
eqidd cmnd wcel oppgmnd syl 3eqtr4rd oppchom eqtr4di oveqd eqtr4d ) A | ||
HHDRZIIGUASZRZIIERAUTIIBUASZRZVBAFTSZFUBSZTSZVDUTVEVGUCAVEFVFVFUDZVEU | ||
DUEUFAGTSZBVCFIIJKVIBTSZUCAVJVIVJBGMVJUDUGUHUFOOAVCUJUIACTSZCDVFHHLAF | ||
UKULVFUKULKFVFVHUMUNAVKUJNNPUIUOBVCGIIVCUDMUPUQAEVAIIQURUS $. | ||
$} | ||
|
||
${ | ||
oppgoppcco.o $e |- ( ph -> .x. = ( comp ` D ) ) $. | ||
oppgoppcco.x $e |- ( ph -> .xb = ( comp ` O ) ) $. | ||
$( The converted opposite monoid has the same composition as that of | ||
the opposite category. Example 3.6(2) of [Adamek] p. 25. | ||
(Contributed by Zhi Wang, 22-Sep-2025.) $) | ||
oppgoppcco $p |- ( ph -> ( <. X , X >. .x. X ) = | ||
( <. Y , Y >. .xb Y ) ) $= | ||
( co cfv eqid cop cco ctpos cplusg cbs wceq oppcbas a1i eqidd mndtcco | ||
eqcomi tposeqd oppccofval coppg cmnd wcel oppgmnd oppgplusfval eqtrdi | ||
syl 3eqtr4rd oveqd eqtr4d ) AHHUAHERZIIUAZIGUBSZRZVEIDRAVEIBUBSZRZUCF | ||
UDSZUCZVGVDAVIVJAGUESZBVHFIIIJKVLBUESZUFAVMVLVMBGMVMTUGUKZUHOOOAVHUIU | ||
JULAVLBVHGIIIVNVHTMOOOUMAVDFUNSZUDSZVKACUESZCEVOHHHLAFUOUPVOUOUPKFVOV | ||
OTZUQUTAVQUINNNPUJVJVPFVOVJTVRVPTURUSVAADVFVEIQVBVC $. | ||
$} | ||
|
||
$( The converted opposite monoid has the same identity morphism as that | ||
of the opposite category. Example 3.6(2) of [Adamek] p. 25. | ||
(Contributed by Zhi Wang, 22-Sep-2025.) $) | ||
oppgoppcid $p |- ( ph -> ( ( Id ` D ) ` X ) = ( ( Id ` O ) ` Y ) ) $= | ||
( c0g cfv ccid wceq eqid cbs wcel coppg oppgid a1i eqcomi ccat mndtccat | ||
oppcbas oppcid syl mndtcid cmnd oppgmnd eqidd 3eqtr4rd ) ADNOZDUAOZNOZG | ||
EPOZOFCPOZOUOUQQADUPUOUPRZUORUBUCAESOZBURDGHIVABSOZQAVBVAVBBEKVBRUGUDUC | ||
MABUETURBPOZQABDHIUFVCBEKVCRUHUIUJACSOZCUSUPFJADUKTUPUKTIDUPUTULUIAVDUM | ||
LAUSUMUJUN $. | ||
$} | ||
|
||
$( | ||
The following is not true yet because base set of converted category | ||
depends on the original monoid in the current definition. | ||
@{ | ||
oppgtoppc.o @e |- O = ( oppG ` M ) @. | ||
oppgtoppc.d @e |- ( ph -> D = ( MndToCat ` O ) ) @. | ||
@( An opposite monoid is converted to an opposite category. Example | ||
3.6(2) of [Adamek] p. 25. (Contributed by Zhi Wang, XX-Sep-2025.) @) | ||
oppgtoppc @p |- ( ph -> D = ( oppCat ` C ) ) @= | ||
( ) ? @. | ||
@} | ||
$) | ||
$} | ||
|
||
${ | ||
|
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is from TA's mathbox!
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Oh my bad... Fixed now.