You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* @brief Model definition for the 1D Convolution Layer
19
-
* @param[out] output_signal pointer to the output signal, size = out_T * out_channels
20
-
* @param[in] out_T number of time steps in the output
21
-
* @param[in] out_channels number of output channels for the ouput of the conv layer
22
-
* @param[in] input_signal pointer to the input signal. size = in_T * in_channels
23
-
* @param[in] in_T number of time steps in the input
19
+
* @param[out] output_signal pointer to the output signal, size = out_time * out_channels
20
+
* @param[in] out_time number of time steps in the output
21
+
* @param[in] out_channels number of output channels for the output of the conv layer
22
+
* @param[in] input_signal pointer to the input signal. size = in_time * in_channels
23
+
* @param[in] in_time number of time steps in the input
24
24
* @param[in] in_channels number of input channels
25
-
* @param[in] padding padding applied to the input before the conv is performed. Note: padding is applied to both the start and end
25
+
* @param[in] padding padding applied to the input before the conv is performed.
26
+
* Note: padding is applied to both the starting and ending of the input, along the time axis
27
+
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(teim step in_time).
28
+
*
26
29
* @param[in] kernel_size kernel size of the conv filter
27
30
* @param[in] params weights, bias and other essential parameters used to describe the layer
28
31
* @param[in] activations an integer to choose the type of activation function.
* @brief Model definition for the 1D Depthwise Convolution Layer
40
-
* @param[out] output_signal pointer to the output signal, size = out_T * in_channels
41
-
* @param[in] out_T number of time steps in the output
42
-
* @param[in] input_signal pointer to the input signal. size = in_T * in_channels
43
-
* @param[in] in_T number of time steps in the input
43
+
* @param[out] output_signal pointer to the output signal, size = out_time * in_channels
44
+
* @param[in] out_time number of time steps in the output
45
+
* @param[in] input_signal pointer to the input signal. size = in_time * in_channels
46
+
* @param[in] in_time number of time steps in the input
44
47
* @param[in] in_channels number of input channels. The output will have the same number of channels
45
-
* @param[in] padding padding applied to the input before the conv is performed. Note: padding is applied to both the start and end
48
+
* @param[in] padding padding applied to the input before the conv is performed.
49
+
* Note: padding is applied to both the starting and ending of the input, along the time axis
50
+
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(teim step in_time).
51
+
*
46
52
* @param[in] kernel_size kernel size of the conv filter
47
53
* @param[in] params weights, bias and other essential parameters used to describe the layer
48
54
* @param[in] activations an integer to choose the type of activation function.
* @brief Model paramters for the 1D Convolution Layer
66
+
* @brief Model parameters for the 1D Low Rank Convolution Layer
62
67
* @var W1 pointer to the 1st low-rank component of the weights, size = out_channels * rank
63
68
* @var W2 pointer to the 2nd low-rank component of the weights, size for regular = rank * in_channels * kernel_size, size for depthwise = rank * kernel_size
64
69
* @var B pointer to the bias vector for the convolution, shape = [out_channels]
* @brief Model definition for the 1D Low Rank Convolution Layer
76
-
* @brief Identical to the non-low-rank form. One modification is the mulitplication of the weights handeled witin the layer
77
-
* @param[out] output_signal pointer to the output signal, size = out_T * out_channels
78
-
* @param[in] out_T number of time steps in the output
81
+
* @brief Identical to the non-low-rank form. One modification is the mulitplication of the weights handeled within the layer
82
+
* @param[out] output_signal pointer to the output signal, size = out_time * out_channels
83
+
* @param[in] out_time number of time steps in the output
79
84
* @param[in] out_channels number of output channels for the ouput of the conv layer
80
-
* @param[in] input_signal pointer to the input signal. size = in_T * in_channels
81
-
* @param[in] in_T number of time steps in the input
85
+
* @param[in] input_signal pointer to the input signal. size = in_time * in_channels
86
+
* @param[in] in_time number of time steps in the input
82
87
* @param[in] in_channels number of input channels
83
-
* @param[in] padding padding applied to the input before the conv is performed. Note: padding is applied to both the start and end
88
+
* @param[in] padding padding applied to the input before the conv is performed.
89
+
* Note: padding is applied to both the starting and ending of the input, along the time axis
90
+
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(teim step in_time).
91
+
*
84
92
* @param[in] kernel_size kernel size of the conv filter
85
93
* @param[in] params weights, bias and other essential parameters used to describe the layer
86
94
* @param[in] activations an integer to choose the type of activation function.
* @brief Model definition for the 1D Depthwise Convolution Layer
98
106
* @brief Identical to the non-low-rank form. One modification is the mulitplication of the weights handeled witin the layer
99
-
* @param[out] output_signal pointer to the output signal, size = out_T * in_channels
100
-
* @param[in] out_T number of time steps in the output
101
-
* @param[in] input_signal pointer to the input signal. size = in_T * in_channels
102
-
* @param[in] in_T number of time steps in the input
107
+
* @param[out] output_signal pointer to the output signal, size = out_time * in_channels
108
+
* @param[in] out_time number of time steps in the output
109
+
* @param[in] input_signal pointer to the input signal. size = in_time * in_channels
110
+
* @param[in] in_time number of time steps in the input
103
111
* @param[in] in_channels number of input channels. The output will have the same number of channels
104
-
* @param[in] padding padding applied to the input before the conv is performed. Note: padding is applied to both the start and end
112
+
* @param[in] padding padding applied to the input before the conv is performed.
113
+
* Note: padding is applied to both the starting and ending of the input, along the time axis
114
+
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(teim step in_time).
115
+
*
105
116
* @param[in] kernel_size kernel size of the conv filter
106
117
* @param[in] params weights, bias and other essential parameters used to describe the layer
107
118
* @param[in] activations an integer to choose the type of activation function.
* @brief Model definition for the 1D Average Pooling Layer
120
-
* @param[out] output_signal pointer to the output signal, size = out_T * in_channels. Provide Null/0 incase of inplace computation
121
-
* @param[in] out_T number of time steps in the output
122
-
* @param[in] input_signal pointer to the input signal. size = in_T * in_channels
123
-
* @param[in] in_T number of time steps in the input
131
+
* @param[out] output_signal pointer to the output signal, size = out_time * in_channels. Provide Null/0 incase of in-place computation
132
+
* @param[in] out_time number of time steps in the output
133
+
* @param[in] input_signal pointer to the input signal. size = in_time * in_channels
134
+
* @param[in] in_time number of time steps in the input
124
135
* @param[in] in_channels number of input channels. The output will have the same number of channels
125
-
* @param[in] padding padding applied to the input before the pool is performed. Note: padding is applied to both the start and end
136
+
* @param[in] padding padding applied to the input before the conv is performed.
137
+
* Note: padding is applied to both the starting and ending of the input, along the time axis
138
+
* E.g : padding = 3, the input is padded with zeros(for 3 time steps), both before the input_signal(time step 0) and after the input_signal(teim step in_time).
139
+
*
126
140
* @param[in] kernel_size kernel size of the pool filter
127
141
* @param[in] activations an integer to choose the type of activation function.
0 commit comments