Skip to content
Open
Show file tree
Hide file tree
Changes from 9 commits
Commits
Show all changes
26 commits
Select commit Hold shift + click to select a range
d494c82
Initial commit
qti-kromero Aug 13, 2025
ddf3ea8
Add README and start config
qti-kromero Aug 13, 2025
1f54074
QuaRot passing, working on GptqQuantizer
qti-kromero Aug 14, 2025
6cae95f
Work on dataset integration
qti-kromero Aug 15, 2025
2d0872e
Data processing works
qti-kromero Aug 15, 2025
6a6f67d
Fix lint issues and cleanup
qti-kromero Aug 15, 2025
cd24ddf
Adding vision resources
qti-kromero Aug 18, 2025
636e982
Add Gemma3 vision configurations
qti-kromero Aug 19, 2025
b4ea7a3
Fix linting error
qti-kromero Aug 19, 2025
1f69af3
Vision model onnx conversion working
qti-kromero Aug 19, 2025
aed20ec
Enable quant on text model
qti-kromero Aug 20, 2025
ba0633c
Improve README
qti-kromero Aug 26, 2025
5ad910d
Merge remote-tracking branch 'origin/main' into dev/qti-kromero/gemma3
qti-kromero Aug 28, 2025
acbdfdc
Add files from Prudvhi
qti-kromero Aug 28, 2025
f7178ae
Updates
qti-kromero Sep 2, 2025
bd70ff4
Updates
qti-kromero Sep 3, 2025
c962cee
Add olive requirements file
prudhvi-qti Sep 4, 2025
360d9c2
update
qti-kromero Sep 4, 2025
5fcda5c
Update Olive scripts for gemma3
prudhvi-qti Sep 4, 2025
14018ee
Update few python packages
prudhvi-qti Sep 5, 2025
1f89241
Use the same llava dataset for text model as well
prudhvi-qti Sep 8, 2025
7d4ced8
Minor cleanup
qti-kromero Sep 9, 2025
a0bd703
Add system requirements
prudhvi-qti Sep 9, 2025
f712bdc
Merge remote-tracking branch 'origin/main' into dev/qti-kromero/gemma3
qti-kromero Sep 18, 2025
f685073
Remove examples
qti-kromero Sep 18, 2025
5dff155
Fix review comments
qti-kromero Sep 18, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions examples/gemma3/qnn/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
# Gemma-3-4B Model Optimization

This repository demonstrates the optimization of the [Google Gemma-3-4B](https://huggingface.co/google/gemma-3-4b-it) model using **post-training quantization (PTQ)** techniques. The optimization process utilizes an environment based heavily upon the [PTQ tutorial for Phi-3.5](https://github.com/CodeLinaro/Olive/blob/main/examples/phi3_5/README.md)

## Automated Setup (Linux Only)

Requirements:
* Python 3.10
* uv - Used throughout the setup scripts, please follow the [publically available installation instructions](https://docs.astral.sh/uv/getting-started/installation/#installation-methods)

This repository contains an automated setup script for Linux that can be used to help automate many of the steps listed in the tutorial above:

```bash
source env_setup.sh
```

## Optimization Process

Since Gemma-3-4B is a multi-modal model composed of both vision and text components, the strategy for optimizing it through Olive is to operate on the constituent models separately before configuring them to work in concert at the onnxruntime-genai stage.

Thus, the following commands should be used to separately produce context binaries for the text and vision portions of the model, respectively.

```bash
olive run --config gemma3-4b-text-qnn-config.json
```

```bash
olive run --config gemma3-4b-vision-qnn-config.json
```
20 changes: 20 additions & 0 deletions examples/gemma3/qnn/custom_gemma3_4b_it_vision.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------


import torch
from transformers import AutoModel


def load_gemma3_model(model_path):
return AutoModel.from_pretrained("google/gemma-3-4b-it")


def get_dummy_inputs(model_handler):
return {
"input_ids": torch.full((1, 256), 262144, dtype=torch.long), # Image token ID
"pixel_values": torch.randn(1, 3, 896, 896, dtype=torch.float32),
"attention_mask": torch.ones((1, 256), dtype=torch.long),
}
23 changes: 23 additions & 0 deletions examples/gemma3/qnn/env_setup.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@

Check failure on line 1 in examples/gemma3/qnn/env_setup.sh

View workflow job for this annotation

GitHub Actions / Optional Lint

[shellcheck] reported by reviewdog 🐶 Tips depend on target shell and yours is unknown. Add a shebang or a 'shell' directive. Raw Output: ./examples/gemma3/qnn/env_setup.sh:1:1: error: Tips depend on target shell and yours is unknown. Add a shebang or a 'shell' directive. (ShellCheck.SC2148)
# Installing setuptools to build Olive from source
uv pip install setuptools

# Requires installation of uv
uv pip install -r ../requirements.txt

# Require installation of Olive dependencies
uv pip install -r ../../../requirements.txt

# Disable CUDA extension build
export BUILD_CUDA_EXT=0

# Install AutoGPTQ from source
uv pip install --no-build-isolation git+https://github.com/PanQiWei/AutoGPTQ.git

# Install GptqModel from source
uv pip install --no-build-isolation git+https://github.com/ModelCloud/GPTQModel.git@5d2911a4b2a709afb0941d53c3882d0cd80b9649

# Install onnxruntime-qnn without installing onnxruntime
# Note: Installing both at the same time may cause conflicts
uv pip install -r https://raw.githubusercontent.com/microsoft/onnxruntime/refs/heads/main/requirements.txt
uv pip install -U --pre --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ORT-Nightly/pypi/simple onnxruntime-qnn --no-deps
80 changes: 80 additions & 0 deletions examples/gemma3/qnn/gemma3-4b-text-qnn-config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
{
"input_model": { "type": "HfModel", "model_path": "google/gemma-3-4b-it" },
"systems": {
"qnn_system": {
"type": "PythonEnvironment",
"python_environment_path": "/local/mnt2/workspace/kromero/olive/olive-venv/bin",
"accelerators": [ { "execution_providers": [ "QNNExecutionProvider" ] } ]
}
},
"data_configs": [
{
"name": "gemma_text_data_config",
"user_script": "user_script.py",
"load_dataset_config": { "type": "gemma_text_dataset", "model_id": "google/gemma-3-4b-it" }
}
],
"passes": {
"q": { "type": "QuaRot" },
"g": {
"type": "GptqModel",
"bits": 4,
"sym": true,
"group_size": -1,
"lm_head": false,
"device": "cuda",
"data_config": "gemma_text_data_config"
},
"cs": { "type": "CaptureSplitInfo", "num_splits": 4, "unique_embeds_lm_head_splits": true },
"mb": {
"type": "ModelBuilder",
"precision": "int4",
"int4_block_size": 32,
"int4_accuracy_level": 4,
"int4_op_types_to_quantize": [ "MatMul", "Gather" ]
},
"mq": {
"type": "MatMulNBitsToQDQ",
"use_int4": true,
"add_zero_point": true,
"nodes_to_exclude": [ "/lm_head/MatMul_Q4" ],
"save_as_external_data": true
},
"gs": {
"type": "GraphSurgeries",
"surgeries": [
{ "surgeon": "RemoveRopeMultiCache" },
{ "surgeon": "AttentionMaskToSequenceLengths" },
{ "surgeon": "SimplifiedLayerNormToL2Norm" }
],
"save_as_external_data": true
},
"sq": {
"type": "OnnxStaticQuantization",
"data_config": "gemma_text_data_config",
"activation_type": "uint16",
"precision": "uint8",
"calibration_providers": [ "CUDAExecutionProvider" ],
"quant_preprocess": true,
"op_types_to_exclude": [ "GatherBlockQuantized", "GroupQueryAttention", "MatMulNBits" ],
"save_as_external_data": true
},
"sp": { "type": "SplitModel" },
"st": { "type": "StaticLLM", "batch_size": 1, "context_length": 64 },
"cb": {
"type": "EPContextBinaryGenerator",
"provider_options": {
"htp_performance_mode": "burst",
"htp_graph_finalization_optimization_mode": "3",
"soc_model": "60"
},
"weight_sharing": true
},
"cp": { "type": "ComposeOnnxModels" }
},
"target": "qnn_system",
"log_severity_level": 1,
"output_dir": "models/gemma-3-4b-it-text",
"cache_dir": "cache",
"no_artifacts": true
}
47 changes: 47 additions & 0 deletions examples/gemma3/qnn/gemma3-4b-vision-qnn-config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
{
"input_model": {
"type": "PyTorchModel",
"model_script": "custom_gemma3_4b_it_vision.py",
"model_loader": "load_gemma3_model",
"dummy_inputs_func": "get_dummy_inputs",
"io_config": {
"input_names": [ "input_ids", "pixel_values", "attention_mask" ],
"input_shapes": [ [ 1, 256 ], [ 1, 3, 896, 896 ], [ 1, 256 ] ],
"input_types": [ "int64", "float32", "int64" ],
"output_names": [ "last_hidden_state" ],
"output_shapes": [ [ 1, 256, 2560 ] ]
}
},
"systems": {
"qnn_system": {
"type": "PythonEnvironment",
"python_environment_path": "/local/mnt2/workspace/kromero/olive/olive-venv/bin",
"accelerators": [ { "execution_providers": [ "QNNExecutionProvider" ] } ]
}
},
"data_configs": [
{
"name": "gemma_vision_data_config",
"user_script": "user_script.py",
"load_dataset_config": { "type": "gemma_vision_dataset", "model_id": "google/gemma-3-4b-it" }
}
],
"passes": {
"conversion": { "type": "OnnxConversion", "target_opset": 17 },
"quantization": {
"type": "OnnxStaticQuantization",
"quant_preprocess": true,
"data_config": "gemma_vision_data_config",
"op_types_to_quantize": [ "MatMul", "LayerNormalization", "Gemm", "Sigmoid", "Gelu" ],
"activation_type": "uint16",
"precision": "uint8",
"calibrate_method": "MinMax"
},
"add_metadata": { "type": "AddOliveMetadata", "graph_name": "gemma-3-4b-it-vision" }
},
"target": "qnn_system",
"log_severity_level": 1,
"output_dir": "models/gemma-3-4b-it-vision",
"cache_dir": "cache",
"no_artifacts": true
}
Loading
Loading