Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 77 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,83 @@ for i in range(epoch):

Then, we can use the familiar PyTorch-like syntax to conduct the optimization.

Here is another example of a simple sales agent:

```python
from opto import trace

@trace.model
class Agent:

def __init__(self, system_prompt):
self.system_prompt = system_prompt
self.instruct1 = trace.node("Decide the language", trainable=True)
self.instruct2 = trace.node("Extract name if it's there", trainable=True)

def __call__(self, user_query):
response = trace.operators.call_llm(self.system_prompt,
self.instruct1, user_query)
en_or_es = self.decide_lang(response)

user_name = trace.operators.call_llm(self.system_prompt,
self.instruct2, user_query)
greeting = self.greet(en_or_es, user_name)

return greeting

@trace.bundle(trainable=True)
def decide_lang(self, response):
"""Map the language into a variable"""
return

@trace.bundle(trainable=True)
def greet(self, lang, user_name):
"""Produce a greeting based on the language"""
greeting = "Hola"
return f"{greeting}, {user_name}!"
```

Imagine we have a feedback function (like a reward function) that tells us how well the agent is doing. We can then optimize this agent online:

```python
from opto.optimizers import OptoPrime

def feedback_fn(generated_response, gold_label='en'):
if gold_label == 'en' and 'Hello' in generated_response:
return "Correct"
elif gold_label == 'es' and 'Hola' in generated_response:
return "Correct"
else:
return "Incorrect"

def train():
epoch = 3
agent = Agent("You are a sales assistant.")
optimizer = OptoPrime(agent.parameters())

for i in range(epoch):
print(f"Training Epoch {i}")
try:
greeting = agent("Hola, soy Juan.")
feedback = feedback_fn(greeting.data, 'es')
except trace.ExecutionError as e:
greeting = e.exception_node
feedback, terminal, reward = greeting.data, False, 0

optimizer.zero_feedback()
optimizer.backward(greeting, feedback)
optimizer.step(verbose=True)

if feedback == 'Correct':
break

return agent

agent = train()
```

Defining and training an agent through Trace will give you more flexibility and control over what the agent learns.

## Tutorials

| **Level** | **Tutorial** | **Run in Colab** | **Description** |
Expand Down
95 changes: 95 additions & 0 deletions examples/greeting.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
from opto import trace
from opto.trace import node, bundle, model, ExecutionError
from opto.optimizers import OptoPrime


@trace.model
class Agent:

def __init__(self, system_prompt):
self.system_prompt = system_prompt
self.instruct1 = trace.node("Decide the language", trainable=True)
self.instruct2 = trace.node("Extract name if it's there", trainable=True)

def __call__(self, user_query):
response = trace.operators.call_llm(self.system_prompt,
self.instruct1, user_query)
en_or_es = self.decide_lang(response)

user_name = trace.operators.call_llm(self.system_prompt,
self.instruct2, user_query)
greeting = self.greet(en_or_es, user_name)

return greeting

@trace.bundle(trainable=True)
def decide_lang(self, response):
"""Map the language into a variable"""
return

@trace.bundle(trainable=True)
def greet(self, lang, user_name):
"""Produce a greeting based on the language"""
greeting = "Hola"
return f"{greeting}, {user_name}!"


def feedback_fn(generated_response, gold_label='en'):
if gold_label == 'en' and 'Hello' in generated_response:
return "Correct"
elif gold_label == 'es' and 'Hola' in generated_response:
return "Correct"
else:
return "Incorrect"


def train():
epoch = 3
agent = Agent("You are a sales assistant.")
optimizer = OptoPrime(agent.parameters())

for i in range(epoch):
print(f"Training Epoch {i}")
try:
greeting = agent("Hola, soy Juan.")
feedback = feedback_fn(greeting.data, 'es')
except ExecutionError as e:
greeting = e.exception_node
feedback, terminal, reward = greeting.data, False, 0

optimizer.zero_feedback()
optimizer.backward(greeting, feedback)
optimizer.step(verbose=True)

if feedback == 'Correct':
break

return agent


class CorrectAgent:

def __init__(self, system_prompt):
self.system_prompt = system_prompt
self.instruct1 = node("Decide the language: es or en?", trainable=True)
self.instruct2 = node("Extract name if it's there", trainable=True)

def __call__(self, user_query):
response = trace.operators.call_llm(self.system_prompt, self.instruct1, user_query)
en_or_es = self.decide_lang(response)

user_name = trace.operators.call_llm(self.system_prompt, self.instruct2, user_query)
greeting = self.greet(en_or_es, user_name)

return greeting

@bundle(trainable=True)
def decide_lang(self, response):
"""Map the language into a variable"""
return 'es' if 'es' or 'spanish' in response.lower() else 'en'

@bundle(trainable=True)
def greet(self, lang, user_name):
"""Produce a greeting based on the language"""
greeting = "Hola" if lang.lower() == "es" else "Hello"
return f"{greeting}, {user_name}!"
1 change: 1 addition & 0 deletions opto/trace/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from opto.trace.containers import NodeContainer
from opto.trace.broadcast import apply_op
import opto.trace.propagators as propagators
import opto.trace.operators as operators

from opto.trace.nodes import Node, GRAPH
from opto.trace.nodes import node
Expand Down
Loading