Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 14 additions & 3 deletions src/ggrappa/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ def get_src_tgs_blocks(blocks, idxs_src, idxs_tgs, check_type='acs'):
return select_blocks[..., idxs_src], select_blocks[..., idxs_tgs]

def get_grappa_filled_data_and_loc(sig, rec, params):
rec[:, np.abs(sig).sum(axis=0)!=0] = 0
#rec[:, np.abs(sig).sum(axis=0)!=0] = 0
sampled_mask = np.abs(rec).sum(axis=0) != 0
extra_data = rec[:, sampled_mask]
rec_loc = np.nonzero(sampled_mask)
Expand Down Expand Up @@ -99,7 +99,8 @@ def get_cart_portion_sparkling(kspace_shots, traj_params, kspace_data, calc_osf_
locs = np.ones((grads.shape[0], 2))*-1
sampled_loc = [[],] * grads.shape[0]
cart_loc = [[],] * grads.shape[0]

new_kspace_data = []
new_kspace_loc = []
gridded_data = np.zeros((kspace_data.shape[0], *traj_params['img_size']), dtype=np.complex64)
for start, end in zip(starts, ends):
row, start_col = start
Expand All @@ -116,6 +117,8 @@ def get_cart_portion_sparkling(kspace_shots, traj_params, kspace_data, calc_osf_
(s_loc[1]-s_loc[0])*
np.diff(kspace_shots[row, s_loc[0]:s_loc[0]+2, 0])*traj_params['img_size'][0]
) == 0:
new_kspace_data.append(re_kspace_data[:, row])
new_kspace_loc.append(kspace_shots[row, ...])
continue
data = sp.signal.resample(
re_kspace_data[:, row, s_loc[0]: s_loc[1]],
Expand All @@ -125,11 +128,19 @@ def get_cart_portion_sparkling(kspace_shots, traj_params, kspace_data, calc_osf_
),
axis=-1,
)
new_kspace_data.append(np.hstack([
re_kspace_data[:, row, :s_loc[0]],
re_kspace_data[:, row, s_loc[1]:]
]))
new_kspace_loc.append(np.concatenate([
kspace_shots[row, :s_loc[0]],
kspace_shots[row, s_loc[1]:],
], axis=0))
locs += 0.5
locs *= np.asarray(traj_params["img_size"]).T
rounded_locs = locs.round(0).astype('int')
gridded_data[:, rounded_locs[0][0]:rounded_locs[0][0]+len(data[0]), rounded_locs[0][1], rounded_locs[0][2]] = data
return gridded_data
return gridded_data, np.hstack(new_kspace_data), np.concatenate(new_kspace_loc, axis=0)

def pad_back_to_size(sig, vol_shape, start_loc, end_loc):
"""Pads a given signal tensor back to a specified volume shape.
Expand Down