Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions mlx_lm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,13 @@
from .convert import convert
from .generate import batch_generate, generate, stream_generate
from .utils import load


__all__ = [
"__version__",
"convert",
"batch_generate",
"generate",
"stream_generate",
"load",
]
12 changes: 8 additions & 4 deletions mlx_lm/tokenizer_utils.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import json
from functools import partial
from json import JSONDecodeError
from typing import List
from typing import Any, Dict, List, Optional

from transformers import AutoTokenizer, PreTrainedTokenizerFast

Expand Down Expand Up @@ -424,8 +424,11 @@ def _is_bpe_decoder(decoder):


def load_tokenizer(
model_path, tokenizer_config_extra={}, return_tokenizer=True, eos_token_ids=None
):
model_path,
tokenizer_config_extra: Optional[Dict[str, Any]]=None,
return_tokenizer=True,
eos_token_ids=None
) -> TokenizerWrapper:
"""Load a huggingface tokenizer and try to infer the type of streaming
detokenizer to use.

Expand Down Expand Up @@ -454,8 +457,9 @@ def load_tokenizer(
eos_token_ids = [eos_token_ids]

if return_tokenizer:
kwargs = tokenizer_config_extra or {}
return TokenizerWrapper(
AutoTokenizer.from_pretrained(model_path, **tokenizer_config_extra),
AutoTokenizer.from_pretrained(model_path, **kwargs),
detokenizer_class,
eos_token_ids=eos_token_ids,
)
Expand Down
11 changes: 6 additions & 5 deletions mlx_lm/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ def load_model(
model_path: Path,
lazy: bool = False,
strict: bool = True,
model_config: dict = {},
model_config: Optional[Dict[str, Any]] = None,
get_model_classes: Callable[[dict], Tuple[Type[nn.Module], Type]] = _get_classes,
) -> Tuple[nn.Module, dict]:
"""
Expand All @@ -163,7 +163,8 @@ def load_model(
ValueError: If the model class or args class are not found or cannot be instantiated.
"""
config = load_config(model_path)
config.update(model_config)
if model_config is not None:
config.update(model_config)

weight_files = glob.glob(str(model_path / "model*.safetensors"))

Expand Down Expand Up @@ -227,12 +228,12 @@ def class_predicate(p, m):

def load(
path_or_hf_repo: str,
tokenizer_config={},
model_config={},
tokenizer_config: Optional[Dict[str, Any]] = None,
model_config: Optional[Dict[str, Any]] = None,
adapter_path: Optional[str] = None,
lazy: bool = False,
return_config: bool = False,
revision: str = None,
revision: Optional[str] = None,
) -> Union[
Tuple[nn.Module, TokenizerWrapper],
Tuple[nn.Module, TokenizerWrapper, Dict[str, Any]],
Expand Down