Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion python/mlx/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,10 +44,11 @@ def tree_map(
return fn(tree, *rest)
elif isinstance(tree, (list, tuple)):
TreeType = type(tree)
return TreeType(
subtrees = (
tree_map(fn, child, *(r[i] for r in rest), is_leaf=is_leaf)
for i, child in enumerate(tree)
)
return TreeType(*subtrees) if hasattr(tree, "_fields") else TreeType(subtrees)
elif isinstance(tree, dict):
return {
k: tree_map(fn, child, *(r[k] for r in rest), is_leaf=is_leaf)
Expand Down
12 changes: 10 additions & 2 deletions python/src/trees.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ nb::object tree_map(
int len = nb::cast<nb::tuple>(subtrees[0]).size();
nb::list l;
validate_subtrees<nb::tuple, nb::list, nb::dict>(subtrees);
auto type = subtrees[0].type();
for (int i = 0; i < len; ++i) {
for (int j = 0; j < subtrees.size(); ++j) {
if (nb::isinstance<nb::tuple>(subtrees[j])) {
Expand All @@ -51,7 +52,10 @@ nb::object tree_map(
}
l.append(recurse(items));
}
return nb::cast<nb::object>(nb::tuple(l));
if (PyTuple_CheckExact(subtrees[0].ptr())) {
return nb::cast<nb::object>(nb::tuple(l));
}
return nb::hasattr(type, "_fields") ? type(*l) : type(l);
} else if (nb::isinstance<nb::dict>(subtrees[0])) {
std::vector<nb::object> items(subtrees.size());
validate_subtrees<nb::dict, nb::list, nb::tuple>(subtrees);
Expand Down Expand Up @@ -178,11 +182,15 @@ void tree_visit_update(
}
return nb::cast<nb::object>(l);
} else if (nb::isinstance<nb::tuple>(subtree)) {
auto type = subtree.type();
nb::list l(subtree);
for (int i = 0; i < l.size(); ++i) {
l[i] = recurse(l[i]);
}
return nb::cast<nb::object>(nb::tuple(l));
if (PyTuple_CheckExact(subtree.ptr())) {
return nb::cast<nb::object>(nb::tuple(l));
}
return nb::hasattr(type, "_fields") ? type(*l) : type(l);
} else if (nb::isinstance<nb::dict>(subtree)) {
auto d = nb::cast<nb::dict>(subtree);
for (auto item : d) {
Expand Down
49 changes: 49 additions & 0 deletions python/tests/test_autograd.py
Original file line number Diff line number Diff line change
Expand Up @@ -798,6 +798,55 @@ def loss_fn(model):
grad_fn(model)
self.assertEqual(model[1].item(), 2.0)

def test_autograd_types(self):
from typing import NamedTuple

class Vector(tuple):
pass

class State(NamedTuple):
a: mx.array
b: mx.array

def transform(x: State):
return State(x.a + 10, x.b * 10)

def transform_tuple(t):
return (t[0] + 10, t[1] * 10)

def transform_vector(t):
return Vector([t[0] + 10, t[1] * 10])

def loss_fn(x):
out = transform(x)
return out.a.sum() + out.b.sum()

def loss_fn_tuple(x):
out = transform_tuple(x)
return out[0].sum() + out[1].sum()

def loss_fn_vector(x):
out = transform_vector(x)
return out[0].sum() + out[1].sum()

x_batch = State(mx.array([1, 2, 3]), mx.array([4, 5, 6]))
grads = mx.grad(loss_fn)(x_batch)
self.assertTrue(isinstance(grads, State))
self.assertTrue(mx.array_equal(grads.a, mx.ones(3)))
self.assertTrue(mx.array_equal(grads.b, mx.ones(3) * 10))

x_batch_tuple = (mx.array([1, 2, 3]), mx.array([4, 5, 6]))
grads = mx.grad(loss_fn_tuple)(x_batch_tuple)
self.assertTrue(isinstance(grads, tuple))
self.assertTrue(mx.array_equal(grads[0], mx.ones(3)))
self.assertTrue(mx.array_equal(grads[1], mx.ones(3) * 10))

x_batch_vector = Vector([mx.array([1, 2, 3]), mx.array([4, 5, 6])])
grads = mx.grad(loss_fn_vector)(x_batch_vector)
self.assertTrue(isinstance(grads, Vector))
self.assertTrue(mx.array_equal(grads[0], mx.ones(3)))
self.assertTrue(mx.array_equal(grads[1], mx.ones(3) * 10))

def test_reduce_jvp(self):
a = mx.arange(4)
b = mx.array([3, 2, 1, 0])
Expand Down
44 changes: 44 additions & 0 deletions python/tests/test_compile.py
Original file line number Diff line number Diff line change
Expand Up @@ -1179,6 +1179,50 @@ def fun(do_compile):
expected = fun(False)
self.assertTrue(mx.allclose(out, expected))

def test_compile_types(self):
from typing import NamedTuple

class Vector(tuple):
pass

class State(NamedTuple):
a: mx.array
b: mx.array

def transform(x: State):
return State(x.a + 10, x.b * 10)

def transform_tuple(t):
return (t[0] + 10, t[1] * 10)

def transform_vector(t):
return Vector([t[0] + 10, t[1] * 10])

x = State(mx.array(1), mx.array(2))

compiled_transform = mx.compile(transform)
compiled_transform_tuple = mx.compile(transform_tuple)
compiled_transform_vector = mx.compile(transform_vector)

x_batch_tuple = (mx.array([1, 2, 3]), mx.array([4, 5, 6]))
out1 = compiled_transform_tuple(x_batch_tuple)

self.assertTrue(isinstance(out1, tuple))
self.assertTrue(mx.array_equal(out1[0], mx.array([11, 12, 13])))
self.assertTrue(mx.array_equal(out1[1], mx.array([40, 50, 60])))

x_batch = State(mx.array([1, 2, 3]), mx.array([4, 5, 6]))
out2 = compiled_transform(x_batch)
self.assertTrue(isinstance(out2, State))
self.assertTrue(mx.array_equal(out2.a, mx.array([11, 12, 13])))
self.assertTrue(mx.array_equal(out2.b, mx.array([40, 50, 60])))

x_batch_vector = Vector([mx.array([1, 2, 3]), mx.array([4, 5, 6])])
out3 = compiled_transform_vector(x_batch_vector)
self.assertTrue(isinstance(out3, Vector))
self.assertTrue(mx.array_equal(out3[0], mx.array([11, 12, 13])))
self.assertTrue(mx.array_equal(out3[1], mx.array([40, 50, 60])))


if __name__ == "__main__":
mlx_tests.MLXTestRunner()
45 changes: 45 additions & 0 deletions python/tests/test_tree.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,51 @@ def test_merge(self):
self.assertEqual(k1, k2)
self.assertTrue(mx.array_equal(v1, v2))

def test_supported_trees(self):

from typing import NamedTuple

class Vector(tuple):
pass

class Params(NamedTuple):
m: mx.array
b: mx.array

list1 = [mx.array([0, 1]), mx.array(2)]
tuple1 = (mx.array([0, 1]), mx.array(2))
vector1 = Vector([mx.array([0, 1]), mx.array(2)])
params1 = Params(m=mx.array([0, 1]), b=mx.array(2))
dict1 = {"m": mx.array([0, 1]), "b": mx.array(2)}

add_one = lambda x: x + 1

list2 = mlx.utils.tree_map(add_one, list1)
tuple2 = mlx.utils.tree_map(add_one, tuple1)
vector2 = mlx.utils.tree_map(add_one, vector1)
params2 = mlx.utils.tree_map(add_one, params1)
dict2 = mlx.utils.tree_map(add_one, dict1)

self.assertTrue(isinstance(list2, list))
self.assertTrue(mx.array_equal(list2[0], mx.array([1, 2])))
self.assertTrue(mx.array_equal(list2[1], mx.array(3)))

self.assertTrue(isinstance(tuple2, tuple))
self.assertTrue(mx.array_equal(tuple2[0], mx.array([1, 2])))
self.assertTrue(mx.array_equal(tuple2[1], mx.array(3)))

self.assertTrue(isinstance(vector2, Vector))
self.assertTrue(mx.array_equal(vector2[0], mx.array([1, 2])))
self.assertTrue(mx.array_equal(vector2[1], mx.array(3)))

self.assertTrue(isinstance(dict2, dict))
self.assertTrue(mx.array_equal(dict2["m"], mx.array([1, 2])))
self.assertTrue(mx.array_equal(dict2["b"], mx.array(3)))

self.assertTrue(isinstance(params2, Params))
self.assertTrue(mx.array_equal(params2.m, mx.array([1, 2])))
self.assertTrue(mx.array_equal(params2.b, mx.array(3)))


if __name__ == "__main__":
mlx_tests.MLXTestRunner()
46 changes: 46 additions & 0 deletions python/tests/test_vmap.py
Original file line number Diff line number Diff line change
Expand Up @@ -723,6 +723,52 @@ def gconv(x, w):
out = mx.vmap(gconv, in_axes=(0, 0))(x, w)
self.assertTrue(mx.allclose(expected, out))

def test_vmap_types(self):

from typing import NamedTuple

class Vector(tuple):
pass

class State(NamedTuple):
a: mx.array
b: mx.array

def transform(x: State):
return State(x.a + 10, x.b * 10)

def transform_tuple(t):
return (t[0] + 10, t[1] * 10)

def transform_vector(t):
return Vector([t[0] + 10, t[1] * 10])

x = State(mx.array(1), mx.array(2))
print(f"{transform(x)=}")

vmap_transform = mx.vmap(transform)
vmap_transform_tuple = mx.vmap(transform_tuple)
vmap_transform_vector = mx.vmap(transform_vector)

x_batch_tuple = (mx.array([1, 2, 3]), mx.array([4, 5, 6]))
out1 = vmap_transform_tuple(x_batch_tuple)

self.assertTrue(isinstance(out1, tuple))
self.assertTrue(mx.array_equal(out1[0], mx.array([11, 12, 13])))
self.assertTrue(mx.array_equal(out1[1], mx.array([40, 50, 60])))

x_batch = State(mx.array([1, 2, 3]), mx.array([4, 5, 6]))
out2 = vmap_transform(x_batch)
self.assertTrue(isinstance(out2, State))
self.assertTrue(mx.array_equal(out2.a, mx.array([11, 12, 13])))
self.assertTrue(mx.array_equal(out2.b, mx.array([40, 50, 60])))

x_batch_vector = Vector([mx.array([1, 2, 3]), mx.array([4, 5, 6])])
out3 = vmap_transform_vector(x_batch_vector)
self.assertTrue(isinstance(out3, Vector))
self.assertTrue(mx.array_equal(out3[0], mx.array([11, 12, 13])))
self.assertTrue(mx.array_equal(out3[1], mx.array([40, 50, 60])))

def test_vmap_masked_scatter(self):
def scatter_fn(x, m, src):
x[m] = src
Expand Down
Loading