-
Notifications
You must be signed in to change notification settings - Fork 928
feat: Enable for exporting unmerged HF Lora Adapter #6225
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
jason9693
wants to merge
10
commits into
modelscope:main
Choose a base branch
from
jason9693:main
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+605
−5
Open
Changes from 9 commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
6e732f3
Enable for exporting unmerged HF Lora Adapter
jason9693 e03e889
modified control logic
jason9693 e84dcc8
modified minor bugs
jason9693 8750db2
modified key mapping
jason9693 bbe153a
change comments to english
jason9693 3d124b8
add test code and convert logic changed (\w use hf model)
jason9693 a4039d0
applied lint
jason9693 e2c9605
apply lint
jason9693 51d5e61
apply precommit run
jason9693 a6fbf4b
Update tests/megatron/test_lora_export.py
jason9693 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Some comments aren't visible on the classic Files Changed page.
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,301 @@ | ||
| # Copyright (c) Kakao Corp. (AI Alignment Team). | ||
| # Contact: [email protected] | ||
|
|
||
| import os | ||
| from collections import OrderedDict | ||
| from dataclasses import asdict | ||
|
|
||
| import json | ||
| from safetensors.torch import save_file | ||
|
|
||
| from swift.utils import get_logger | ||
|
|
||
| logger = get_logger() | ||
|
|
||
|
|
||
| def convert_mcore_lora_to_hf_peft(peft_model, mg_model, hf_model, dst_dir: str, num_query_groups: int) -> None: | ||
| """ | ||
| Convert Megatron Core LoRA adapter to HuggingFace PEFT format. | ||
|
|
||
| Args: | ||
| peft_model: Megatron Core PEFTModel | ||
| mg_model: loaded Megatron Core Model (for shape) | ||
| hf_model: HuggingFace model (required for shape extraction) | ||
| dst_dir: Dir path to saving HuggingFace PEFT | ||
| num_query_groups: number of Attention group | ||
| """ | ||
| os.makedirs(dst_dir, exist_ok=True) | ||
| dst_model = os.path.join(dst_dir, 'adapter_model.safetensors') | ||
| dst_cfg = os.path.join(dst_dir, 'adapter_config.json') | ||
|
|
||
| logger.info(f'Converting Megatron Core LoRA to HF PEFT format at {dst_dir}') | ||
|
|
||
| # Extract shape information from HuggingFace model | ||
| logger.info('Extracting shape information from HuggingFace model...') | ||
| attn0 = hf_model.model.layers[0].self_attn | ||
|
|
||
| q_out, in_features = attn0.q_proj.weight.shape # [out, in] | ||
| k_out, _ = attn0.k_proj.weight.shape | ||
| v_out, _ = attn0.v_proj.weight.shape | ||
|
|
||
| q_dim = q_out // num_query_groups | ||
| kv_dim = k_out // num_query_groups | ||
| assert v_out // num_query_groups == kv_dim, 'k/v group out dim mismatch' | ||
|
|
||
| logger.info(f'Shape extraction: num_query_groups={num_query_groups}, q_dim={q_dim}, ' | ||
| f'kv_dim={kv_dim}, in_features={in_features}') | ||
|
|
||
| # Bucketize modules from peft_model state_dict | ||
| logger.info('Extracting LoRA weights from loaded PEFTModel...') | ||
| bucket = {} # prefix -> {local_name: tensor} | ||
| state_dict = peft_model.state_dict() | ||
|
|
||
| for fullkey, tensor in state_dict.items(): | ||
| # Process only adapter-related keys | ||
| if 'lora_A' not in fullkey and 'lora_B' not in fullkey: | ||
| continue | ||
| parts = fullkey.split('.') | ||
|
|
||
| # Parse key considering .default.weight format | ||
| if len(parts) >= 2 and parts[-2] == 'default': | ||
| # e.g., lora_A.default.weight -> lora_A.weight | ||
| local = f'{parts[-3]}.{parts[-1]}' # default.weight | ||
| prefix = '.'.join(parts[:-3]) # e.g., ...linear_qkv | ||
| else: | ||
| # Original logic: e.g., lora_A.weight | ||
| local = '.'.join(parts[-2:]) # e.g., lora_A.weight | ||
| prefix = '.'.join(parts[:-2]) # e.g., ...linear_qkv | ||
|
|
||
| bucket.setdefault(prefix, {})[local] = tensor.cpu() | ||
|
|
||
| dst_tensors = OrderedDict() | ||
|
|
||
| def push(dst, key, tensor): | ||
| """Create independent copy of tensor for saving + ensure contiguous memory""" | ||
| t = tensor.detach().clone().contiguous() | ||
| if key in dst: | ||
| raise ValueError(f'Duplicate key: {key}') | ||
| if 'weight' not in key: | ||
| logger.debug(f'Skipping non-weight key: {key}') | ||
| return | ||
| key = remap_key_for_peft(key) | ||
| dst[key] = t | ||
|
|
||
| def remap_key_for_peft(key: str) -> str: | ||
| """Convert key to HuggingFace PEFT format""" | ||
| # 1) decoder → model | ||
| key = key.replace('.decoder.layers.', '.model.layers.') | ||
| # 2) self_attention → self_attn | ||
| key = key.replace('.self_attention.', '.self_attn.') | ||
| # 3) check prefix | ||
| if key.startswith('model.layers.'): | ||
| key = 'base_model.model.' + key | ||
| return key | ||
|
|
||
| def convert_linear_proj(prefix, tensors): | ||
| """mcore: ...self_attention.linear_proj -> HF: ...self_attn.o_proj""" | ||
| new_prefix = prefix.replace('.self_attention.linear_proj', '.self_attn.o_proj') | ||
| for local, T in tensors.items(): | ||
| push(dst_tensors, f'{new_prefix}.{local}', T) | ||
|
|
||
| def convert_linear_qkv(prefix, tensors): | ||
| """ | ||
| Split Megatron Core fused qkv LoRA into HF q_proj, k_proj, v_proj | ||
|
|
||
| mcore: | ||
| A: [r, in_features] (shared) | ||
| B: [num_query_groups*(q_dim+kv_dim+kv_dim), r] | ||
| -> HF: | ||
| q_proj: A=[r,in], B=[num_query_groups*q_dim, r] | ||
| k_proj: A=[r,in], B=[num_query_groups*kv_dim, r] | ||
| v_proj: A=[r,in], B=[num_query_groups*kv_dim, r] | ||
| """ | ||
| A = tensors.get('lora_A.weight', None) | ||
| B = tensors.get('lora_B.weight', None) | ||
| if A is None or B is None: | ||
| # If core weights are missing, pass through with original key | ||
| for local, T in tensors.items(): | ||
| push(dst_tensors, f'{prefix}.{local}', T) | ||
| return | ||
|
|
||
| r, in_A = A.shape | ||
| out_B, rB = B.shape | ||
| assert rB == r, f'LoRA rank mismatch: A={r}, B={rB}' | ||
| assert in_A == in_features, f'in_features mismatch: A={in_A}, base={in_features}' | ||
|
|
||
| expected_out = num_query_groups * (q_dim + kv_dim + kv_dim) | ||
| assert out_B == expected_out, f'Fused B out({out_B}) != expected({expected_out})' | ||
|
|
||
| # Reshape to [num_query_groups, (q_dim+kv_dim+kv_dim), r] then slice | ||
| Bg = B.reshape(num_query_groups, q_dim + kv_dim + kv_dim, r) | ||
| Bq = Bg[:, :q_dim, :].reshape(num_query_groups * q_dim, r) | ||
| Bk = Bg[:, q_dim:q_dim + kv_dim, :].reshape(num_query_groups * kv_dim, r) | ||
| Bv = Bg[:, q_dim + kv_dim:, :].reshape(num_query_groups * kv_dim, r) | ||
|
|
||
| misc = {k: v for k, v in tensors.items() if k not in ('lora_A.weight', 'lora_B.weight')} | ||
|
|
||
| # q_proj | ||
| q_prefix = prefix.replace('.self_attention.linear_qkv', '.self_attn.q_proj') | ||
| push(dst_tensors, f'{q_prefix}.lora_A.weight', A) | ||
| push(dst_tensors, f'{q_prefix}.lora_B.weight', Bq) | ||
|
|
||
| # k_proj | ||
| k_prefix = prefix.replace('.self_attention.linear_qkv', '.self_attn.k_proj') | ||
| push(dst_tensors, f'{k_prefix}.lora_A.weight', A) | ||
| push(dst_tensors, f'{k_prefix}.lora_B.weight', Bk) | ||
| for k, v in misc.items(): | ||
| push(dst_tensors, f'{k_prefix}.{k}', v) | ||
|
|
||
| # v_proj | ||
| v_prefix = prefix.replace('.self_attention.linear_qkv', '.self_attn.v_proj') | ||
| push(dst_tensors, f'{v_prefix}.lora_A.weight', A) | ||
| push(dst_tensors, f'{v_prefix}.lora_B.weight', Bv) | ||
| for k, v in misc.items(): | ||
| push(dst_tensors, f'{v_prefix}.{k}', v) | ||
|
|
||
| def convert_mla_attention(prefix, tensors): | ||
| """ | ||
| Multi-Latent Attention (MLA) LoRA conversion | ||
|
|
||
| mcore -> HF: | ||
| linear_q_down_proj -> q_a_proj | ||
| linear_q_up_proj -> q_b_proj | ||
| linear_kv_down_proj -> kv_a_proj_with_mqa | ||
| linear_kv_up_proj -> kv_b_proj | ||
| """ | ||
| # q_proj (down -> a, up -> b) | ||
| if '.linear_q_down_proj' in prefix: | ||
| new_prefix = prefix.replace('.linear_q_down_proj', '.q_a_proj') | ||
| for local, T in tensors.items(): | ||
| push(dst_tensors, f'{new_prefix}.{local}', T) | ||
| elif '.linear_q_up_proj' in prefix: | ||
| new_prefix = prefix.replace('.linear_q_up_proj', '.q_b_proj') | ||
| for local, T in tensors.items(): | ||
| push(dst_tensors, f'{new_prefix}.{local}', T) | ||
| elif '.linear_kv_down_proj' in prefix: | ||
| new_prefix = prefix.replace('.linear_kv_down_proj', '.kv_a_proj_with_mqa') | ||
| for local, T in tensors.items(): | ||
| push(dst_tensors, f'{new_prefix}.{local}', T) | ||
| elif '.linear_kv_up_proj' in prefix: | ||
| new_prefix = prefix.replace('.linear_kv_up_proj', '.kv_b_proj') | ||
| for local, T in tensors.items(): | ||
| push(dst_tensors, f'{new_prefix}.{local}', T) | ||
|
|
||
| def convert_mlp_linear_fc1(prefix, tensors): | ||
| """ | ||
| Split MLP linear_fc1 LoRA into HF gate_proj, up_proj | ||
|
|
||
| mcore: linear_fc1 [gate_up_dim, in_features] | ||
| -> HF: gate_proj [gate_dim, in_features], up_proj [up_dim, in_features] | ||
| """ | ||
| A = tensors.get('lora_A.weight', None) | ||
| B = tensors.get('lora_B.weight', None) | ||
| if A is None or B is None: | ||
| for local, T in tensors.items(): | ||
| push(dst_tensors, f'{prefix}.{local}', T) | ||
| return | ||
|
|
||
| # Split gate_up_dim into gate_dim and up_dim (usually 1:1 ratio) | ||
| gate_up_dim = B.shape[0] | ||
| gate_dim = gate_up_dim // 2 | ||
|
|
||
| # Split B into gate and up | ||
| B_gate = B[:gate_dim, :] | ||
| B_up = B[gate_dim:, :] | ||
|
|
||
| misc = {k: v for k, v in tensors.items() if k not in ('lora_A.weight', 'lora_B.weight')} | ||
|
|
||
| # gate_proj | ||
| gate_prefix = prefix.replace('.mlp.linear_fc1', '.mlp.gate_proj') | ||
| push(dst_tensors, f'{gate_prefix}.lora_A.weight', A) | ||
| push(dst_tensors, f'{gate_prefix}.lora_B.weight', B_gate) | ||
| for k, v in misc.items(): | ||
| push(dst_tensors, f'{gate_prefix}.{k}', v) | ||
|
|
||
| # up_proj | ||
| up_prefix = prefix.replace('.mlp.linear_fc1', '.mlp.up_proj') | ||
| push(dst_tensors, f'{up_prefix}.lora_A.weight', A) | ||
| push(dst_tensors, f'{up_prefix}.lora_B.weight', B_up) | ||
| for k, v in misc.items(): | ||
| push(dst_tensors, f'{up_prefix}.{k}', v) | ||
|
|
||
| def convert_mlp_linear_fc2(prefix, tensors): | ||
| """Convert MLP linear_fc2 LoRA to HF down_proj""" | ||
| new_prefix = prefix.replace('.mlp.linear_fc2', '.mlp.down_proj') | ||
| for local, T in tensors.items(): | ||
| push(dst_tensors, f'{new_prefix}.{local}', T) | ||
|
|
||
| def convert_moe_experts(prefix, tensors): | ||
| """MoE experts LoRA conversion""" | ||
| # experts[expert_idx].linear_fc1 -> experts[expert_idx].gate_proj, up_proj | ||
| if '.linear_fc1' in prefix: | ||
| convert_mlp_linear_fc1(prefix, tensors) | ||
| # experts[expert_idx].linear_fc2 -> experts[expert_idx].down_proj | ||
| elif '.linear_fc2' in prefix: | ||
| convert_mlp_linear_fc2(prefix, tensors) | ||
|
|
||
| # Execute conversion by module | ||
| for prefix, tensors in bucket.items(): | ||
| # Attention conversion | ||
| if '.self_attention.linear_proj' in prefix: | ||
| convert_linear_proj(prefix, tensors) | ||
| elif '.self_attention.linear_qkv' in prefix: | ||
| convert_linear_qkv(prefix, tensors) | ||
| # Multi-Latent Attention conversion | ||
| elif any(x in prefix | ||
| for x in ['.linear_q_down_proj', '.linear_q_up_proj', '.linear_kv_down_proj', '.linear_kv_up_proj']): | ||
| convert_mla_attention(prefix, tensors) | ||
| # MLP conversion | ||
| elif '.mlp.linear_fc1' in prefix: | ||
| convert_mlp_linear_fc1(prefix, tensors) | ||
| elif '.mlp.linear_fc2' in prefix: | ||
| convert_mlp_linear_fc2(prefix, tensors) | ||
| # MoE experts conversion (excluding router) | ||
| elif '.experts' in prefix and ('.linear_fc1' in prefix or '.linear_fc2' in prefix): | ||
| convert_moe_experts(prefix, tensors) | ||
| else: | ||
| # Copy unknown modules as-is | ||
| logger.warning(f'Unknown module pattern: {prefix}') | ||
| for local, T in tensors.items(): | ||
| push(dst_tensors, f'{prefix}.{local}', T) | ||
|
|
||
| # Save converted tensors | ||
| save_file(dst_tensors, dst_model, metadata={'format': 'pt'}) | ||
| logger.info(f'Saved converted LoRA tensors to {dst_model}') | ||
|
|
||
| # Update adapter_config.json | ||
| logger.info('Converting adapter config...') | ||
| cfg = peft_model.peft_config['default'] if isinstance(peft_model.peft_config['default'], dict) else asdict( | ||
| peft_model.peft_config['default']) | ||
|
|
||
| tm = cfg.get('target_modules', None) | ||
| if tm is not None: | ||
| if isinstance(tm, str): | ||
| tm = [tm] | ||
| new_tm = [] | ||
| for t in tm: | ||
| if t == 'linear_proj': | ||
| new_tm.append('o_proj') | ||
| elif t in ('linear_qkv', 'query_key_value'): | ||
| new_tm.extend(['q_proj', 'k_proj', 'v_proj']) | ||
| elif t == 'linear_fc1': | ||
| new_tm.extend(['gate_proj', 'up_proj']) | ||
| elif t == 'linear_fc2': | ||
| new_tm.append('down_proj') | ||
| elif t == 'linear_q_down_proj': | ||
| new_tm.append('q_a_proj') | ||
| elif t == 'linear_q_up_proj': | ||
| new_tm.append('q_b_proj') | ||
| elif t == 'linear_kv_down_proj': | ||
| new_tm.append('kv_a_proj_with_mqa') | ||
| elif t == 'linear_kv_up_proj': | ||
| new_tm.append('kv_b_proj') | ||
| else: | ||
| new_tm.append(t) | ||
| cfg['target_modules'] = sorted(set(new_tm)) | ||
|
|
||
| with open(dst_cfg, 'w', encoding='utf-8') as f: | ||
| json.dump(cfg, f, ensure_ascii=False, indent=2, default=str) | ||
|
|
||
| logger.info(f'cfg: {cfg}') | ||
| logger.info(f'Saved converted adapter config to {dst_cfg}') | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The
pushfunction currently skips any tensor whose key does not contain'weight'. This will cause LoRA biases to be dropped during conversion if they are enabled (e.g., withlora_bias='all'). This could lead to incorrect behavior for the exported adapter. The check should be removed to ensure all parts of the LoRA layers, including biases, are correctly processed and saved.