Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions swift/llm/model/constant.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,6 +142,8 @@ class LLMModelType:
gemma_emb = 'gemma_emb'
ernie_thinking = 'ernie_thinking'
longchat = 'longchat'
olmoe = 'olmoe'
olmoe_0924 = 'olmoe_0924'
minimind = 'minimind'


Expand Down
29 changes: 29 additions & 0 deletions swift/llm/model/model/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -397,3 +397,32 @@ def get_model_tokenizer_yuan(model_dir: str,
get_model_tokenizer_with_flash_attn,
architectures=['BailingMoeV2ForCausalLM'],
))

register_model(
ModelMeta(
LLMModelType.olmoe,
[
ModelGroup([
Model('allenai/OLMoE-1B-7B-0125', 'allenai/OLMoE-1B-7B-0125'),
Model('allenai/OLMoE-1B-7B-0125-Instruct', 'allenai/OLMoE-1B-7B-0125-Instruct'),
])
],
TemplateType.olmoe,
get_model_tokenizer_with_flash_attn,
architectures=['OlmoeForCausalLM'],
))

register_model(
ModelMeta(
LLMModelType.olmoe_0924,
[
ModelGroup([
Model('allenai/OLMoE-1B-7B-0924', 'allenai/OLMoE-1B-7B-0924'),
Model('allenai/OLMoE-1B-7B-0924-Instruct', 'allenai/OLMoE-1B-7B-0924-Instruct'),
Model('allenai/OLMoE-1B-7B-0924-SFT', 'allenai/OLMoE-1B-7B-0924-SFT'),
])
],
TemplateType.olmoe_0924,
get_model_tokenizer_with_flash_attn,
architectures=['OlmoeForCausalLM'],
))
3 changes: 3 additions & 0 deletions swift/llm/model/register.py
Original file line number Diff line number Diff line change
Expand Up @@ -247,6 +247,9 @@ def deepspeed_set_z3_leaf_modules(model, z3_leaf_modules):
elif architecture == 'Qwen3NextForCausalLM':
from transformers.models.qwen3_next.modeling_qwen3_next import Qwen3NextSparseMoeBlock
z3_leaf_modules = [Qwen3NextSparseMoeBlock]
elif architecture == 'OlmoeForCausalLM':
from transformers.models.olmoe.modeling_olmoe import OlmoeSparseMoeBlock
z3_leaf_modules = [OlmoeSparseMoeBlock]

if z3_leaf_modules:
from deepspeed.utils import set_z3_leaf_modules
Expand Down
2 changes: 2 additions & 0 deletions swift/llm/template/constant.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,8 @@ class LLMTemplateType:
dbrx = 'dbrx'

bert = 'bert'
olmoe = 'olmoe'
olmoe_0924 = 'olmoe_0924'
minimind = 'minimind'


Expand Down
22 changes: 22 additions & 0 deletions swift/llm/template/template/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -424,3 +424,25 @@ class GptOssTemplateMeta(TemplateMeta):
is_thinking=True,
thinking_prefix='<think>\n',
))

register_template(
TemplateMeta(
LLMTemplateType.olmoe,
prefix=['|||IP_ADDRESS|||'],
system_prefix=['|||IP_ADDRESS|||<|system|>\n{{SYSTEM}}\n'],
prompt=['<|user|>\n{{QUERY}}\n<|assistant|>\n'],
chat_sep=['|||IP_ADDRESS|||\n'],
suffix=['|||IP_ADDRESS|||'],
stop_words=['<|endoftext|>'],
))

register_template(
TemplateMeta(
LLMTemplateType.olmoe_0924,
prefix=['<|endoftext|>'],
system_prefix=['<|endoftext|><|system|>\n{{SYSTEM}}\n'],
prompt=['<|user|>\n{{QUERY}}\n<|assistant|>\n'],
chat_sep=['<|endoftext|>\n'],
suffix=['<|endoftext|>'],
stop_words=['<|endoftext|>'],
))
1 change: 1 addition & 0 deletions swift/megatron/model/constant.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
class LLMMegatronModelType:
gpt = 'gpt'
qwen3_next = 'qwen3_next'
olmoe = 'olmoe'
glm4 = 'glm4'


Expand Down
2 changes: 1 addition & 1 deletion swift/megatron/model/gpt/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
from swift.llm import ModelType
from ..constant import MegatronModelType
from ..register import MegatronModelMeta, register_megatron_model
from . import glm4, qwen3_next
from . import glm4, olmoe, qwen3_next

register_megatron_model(
MegatronModelMeta(
Expand Down
226 changes: 226 additions & 0 deletions swift/megatron/model/gpt/olmoe.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
from copy import deepcopy
from typing import Optional

import megatron.core
import torch
import torch.distributed as dist
from megatron.core.extensions.transformer_engine import SplitAlongDim, TENorm
from megatron.core.models.gpt.gpt_layer_specs import get_gpt_layer_with_transformer_engine_spec
from megatron.core.transformer.attention import SelfAttention as SelfAttentionBase
from megatron.core.transformer.attention import SelfAttentionSubmodules
from megatron.core.transformer.enums import LayerType
from megatron.core.transformer.spec_utils import build_module
from megatron.core.transformer.transformer_block import TransformerBlockSubmodules, get_num_layers_to_build
from megatron.core.transformer.transformer_config import TransformerConfig
from megatron.core.transformer.transformer_layer import get_transformer_layer_offset
from packaging import version

from swift.llm import ModelType
from swift.megatron.tuners import LoraParallelLinear
from ..constant import MegatronModelType
from ..gpt_bridge import GPTBridge
from ..register import MegatronModelMeta, register_megatron_model

mcore_013 = version.parse(megatron.core.__version__) >= version.parse('0.13.0rc0')


class OLMoESelfAttention(SelfAttentionBase):

def __init__(self, config: TransformerConfig, submodules: SelfAttentionSubmodules, *args, **kwargs):
super().__init__(config, submodules, *args, **kwargs)
self.q_layernorm = build_module(
submodules.q_layernorm,
hidden_size=self.hidden_size_per_attention_head * self.num_attention_heads_per_partition,
config=self.config,
eps=self.config.layernorm_epsilon,
)
self.k_layernorm = build_module(
submodules.k_layernorm,
hidden_size=self.hidden_size_per_attention_head * self.num_query_groups_per_partition,
config=self.config,
eps=self.config.layernorm_epsilon,
)

def get_query_key_value_tensors(self, hidden_states, key_value_states=None, *args, **kwargs):
"""
Derives `query`, `key` and `value` tensors from `hidden_states`.
"""
# Attention heads [sq, b, h] --> [sq, b, ng * (np/ng + 2) * hn)]
mixed_qkv, _ = self.linear_qkv(hidden_states)

# [sq, b, ng * (np/ng + 2) * hn] -> [sq, b, np * hn], [sq, b, ng * hn], [sq, b, ng * hn]
split_arg_list = [
self.hidden_size_per_attention_head * self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head * self.num_query_groups_per_partition,
self.hidden_size_per_attention_head * self.num_query_groups_per_partition
]

if SplitAlongDim is not None:
(query, key, value) = SplitAlongDim(mixed_qkv, 2, split_arg_list)
else:
(query, key, value) = torch.split(mixed_qkv, split_arg_list, dim=2)
if self.q_layernorm is not None:
query = self.q_layernorm(query)

if self.k_layernorm is not None:
key = self.k_layernorm(key)
query = query.reshape(query.size(0), query.size(1), -1, self.hidden_size_per_attention_head)
key = key.reshape(key.size(0), key.size(1), -1, self.hidden_size_per_attention_head)
value = value.reshape(value.size(0), value.size(1), -1, self.hidden_size_per_attention_head)

if self.config.test_mode:
self.run_realtime_tests()

return query, key, value


def get_olmoe_decoder_block_spec(
config: TransformerConfig,
vp_stage: Optional[int] = None,
) -> TransformerBlockSubmodules:
"""GPT block spec."""
layer_norm_impl = TENorm
kwargs = {'use_kitchen': config.use_kitchen} if mcore_013 else {}
moe_layer_spec = get_gpt_layer_with_transformer_engine_spec(
num_experts=config.num_moe_experts,
moe_grouped_gemm=config.moe_grouped_gemm,
qk_layernorm=True,
multi_latent_attention=False,
moe_use_legacy_grouped_gemm=config.moe_use_legacy_grouped_gemm,
**kwargs,
)
layer_specs = []
for _ in range(config.num_layers):
layer_spec = deepcopy(moe_layer_spec)
layer_spec.submodules.self_attention.module = OLMoESelfAttention
layer_specs.append(layer_spec)

num_layers_to_build = get_num_layers_to_build(config, vp_stage=vp_stage)

if config.pipeline_model_parallel_layout is not None:
local_layer_specs = [
layer_specs[layer_id] for layer_id in config.pipeline_model_parallel_layout.get_layer_id_list(
layer_type=LayerType.decoder, vp_stage=vp_stage)
]
else:
offset = get_transformer_layer_offset(config, vp_stage=vp_stage)
local_layer_specs = layer_specs[offset:offset + num_layers_to_build]

# Block spec.
block_spec = TransformerBlockSubmodules(layer_specs=local_layer_specs, layer_norm=layer_norm_impl)

return block_spec


class OLMoEBridge(GPTBridge):

def _set_attn_state(self, mg_attn, hf_state_dict, hf_prefix: str, layer_idx: int, to_mcore: bool):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hello, Could you tell me Why override this function?

Copy link
Author

@qianhao0713 qianhao0713 Dec 22, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

One difference in model architecture between Olmoe and other GPT-like models is that Olmoe applies LayerNorm on the QKV tensor across the n_head * head_dim dimension, rather than on the head_dim dimension.
In the Megatron GPT implementation, the QKV is first projected via the linear_qkv module into a matrix of shape (batch_size * seq_len * n_head, head_dim), and then LayerNorm is applied. In contrast, in Olmoe, the tensor must be reshaped to (batch_size * seq_len, n_head * head_dim) before applying LayerNorm.
This difference means that when converting weights from Hugging Face to Megatron format, the weights of the linear_qkv layer must be concatenated along the n_head*head_dim dimension rather than the head_dim dimension.
The points mentioned above are the reasons why the GPTBridge needs to be overrided

if to_mcore:
hf_state_dict = self._remove_prefix(hf_state_dict, hf_prefix)
else:
hf_state_dict = {}
hf_attn = self.hf_layers[layer_idx].self_attn
args = self.args
if to_mcore:
if isinstance(mg_attn.linear_qkv, LoraParallelLinear):
lora_A = hf_state_dict['q_proj.lora_A.weight'].load()
assert (lora_A == hf_state_dict['k_proj.lora_A.weight'].load()).all() and (
lora_A == hf_state_dict['v_proj.lora_A.weight'].load()
).all(), 'Need to ensure QKV\'s lora_A are consistent'
lora_B = torch.cat([
hf_state_dict['q_proj.lora_B.weight'].load(),
hf_state_dict['k_proj.lora_B.weight'].load(),
hf_state_dict['v_proj.lora_B.weight'].load(),
],
dim=0)
self._set_weight(mg_attn.linear_qkv.lora_A[self._adapter_name].weight, lora_A,
'linear_qkv.lora_A.weight')
self._set_weight(mg_attn.linear_qkv.lora_B[self._adapter_name].weight, lora_B,
'linear_qkv.lora_B.weight')
else:
linear_qkv_weight = torch.cat([
hf_state_dict['q_proj.weight'].load(),
hf_state_dict['k_proj.weight'].load(),
hf_state_dict['v_proj.weight'].load(),
],
dim=0)
qkv_scale_inv = None
if 'q_proj.weight_scale_inv' in hf_state_dict:
qkv_scale_inv = torch.cat([
hf_state_dict['q_proj.weight_scale_inv'].load(),
hf_state_dict['k_proj.weight_scale_inv'].load(),
hf_state_dict['v_proj.weight_scale_inv'].load(),
],
dim=0)
self._set_weight(
mg_attn.linear_qkv.weight, linear_qkv_weight, 'linear_qkv.weight', hf_scale_inv=qkv_scale_inv)
else:
q_dim, kv_dim = hf_attn.q_proj.weight.shape[0], hf_attn.k_proj.weight.shape[0]
q_block = q_dim // self.fp8_block_size
kv_block = kv_dim // self.fp8_block_size
is_lora = False if mg_attn is None else isinstance(mg_attn.linear_qkv,
LoraParallelLinear) and self._is_peft_format
is_lora = torch.tensor([is_lora], dtype=torch.bool, device='cuda')
if self.pp_size > 1:
dist.all_reduce(is_lora, group=self.pp_group)
if is_lora:
lora_A, _ = self._get_weight(
None if mg_attn is None else mg_attn.linear_qkv.lora_A[self._adapter_name].weight.data,
f'linear_qkv.lora_A.{self._adapter_name}.weight')
lora_B, _ = self._get_weight(
None if mg_attn is None else mg_attn.linear_qkv.lora_B[self._adapter_name].weight.data,
f'linear_qkv.lora_B.{self._adapter_name}.weight')
if lora_A is not None:
self._peft_target_modules.update({'q_proj', 'k_proj', 'v_proj'})
for key in ['q_proj', 'k_proj', 'v_proj']:
hf_state_dict[f'{key}.lora_A.weight'] = lora_A.clone()
hf_state_dict['q_proj.lora_B.weight'] = lora_B[:q_dim, :].clone()
hf_state_dict['k_proj.lora_B.weight'] = lora_B[q_dim:-kv_dim, :].clone()
hf_state_dict['v_proj.lora_B.weight'] = lora_B[-kv_dim:, :].clone()
elif not self._is_peft_format:
mg_attn_weight, scale_inv = self._get_weight(
None if mg_attn is None else mg_attn.linear_qkv.weight.data, 'linear_qkv.weight')
if mg_attn_weight is not None:
hf_state_dict['q_proj.weight'] = mg_attn_weight[:q_dim, :].clone()
hf_state_dict['k_proj.weight'] = mg_attn_weight[q_dim:-kv_dim, :].clone()
hf_state_dict['v_proj.weight'] = mg_attn_weight[-kv_dim:, :].clone()
if scale_inv is not None:
hf_state_dict['q_proj.weight_scale_inv'] = scale_inv[:q_block, :].clone()
hf_state_dict['k_proj.weight_scale_inv'] = scale_inv[q_block:-kv_block, :].clone()
hf_state_dict['v_proj.weight_scale_inv'] = scale_inv[-kv_block:, :].clone()
del mg_attn_weight
self._set_state_dict(mg_attn, 'linear_proj.weight', hf_state_dict, 'o_proj.weight', to_mcore)
if args.add_qkv_bias and not self._is_peft_format:
if to_mcore:
linear_qkv_bias = torch.cat([
hf_state_dict['q_proj.bias'].load(),
hf_state_dict['k_proj.bias'].load(),
hf_state_dict['v_proj.bias'].load(),
],
dim=0)
self._set_weight(mg_attn.linear_qkv.bias, linear_qkv_bias, 'linear_qkv.bias')
else:
mg_attn_bias, _ = self._get_weight(None if mg_attn is None else mg_attn.linear_qkv.bias.data,
'linear_qkv.bias')
if mg_attn_bias is not None:
hf_state_dict['q_proj.bias'] = mg_attn_bias[:q_dim].clone()
hf_state_dict['k_proj.bias'] = mg_attn_bias[q_dim:-kv_dim].clone()
hf_state_dict['v_proj.bias'] = mg_attn_bias[-kv_dim:].clone()
hf_q_norm_key = 'q_norm.weight' if hasattr(hf_attn, 'q_norm') else 'query_layernorm.weight'
hf_k_norm_key = 'k_norm.weight' if hasattr(hf_attn, 'k_norm') else 'key_layernorm.weight'
self._set_state_dict(mg_attn, 'q_layernorm.weight', hf_state_dict, hf_q_norm_key, to_mcore)
self._set_state_dict(mg_attn, 'k_layernorm.weight', hf_state_dict, hf_k_norm_key, to_mcore)
if to_mcore:
hf_state_dict = {}
else:
hf_state_dict = self._add_prefix(hf_state_dict, hf_prefix)
return hf_state_dict


register_megatron_model(
MegatronModelMeta(
MegatronModelType.olmoe,
[ModelType.olmoe, ModelType.olmoe_0924],
get_transformer_layer_spec=get_olmoe_decoder_block_spec,
bridge_cls=OLMoEBridge,
))
8 changes: 7 additions & 1 deletion tests/megatron/test_align/test_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,11 @@ def test_glm4():
_test_model('ZhipuAI/GLM-4-9B-0414')


def test_olmoe():
# _test_model('allenai/OLMoE-1B-7B-0924-Instruct')
_test_model('allenai/OLMoE-1B-7B-0125-Instruct')


if __name__ == '__main__':
# test_qwen2()
# test_llama2()
Expand Down Expand Up @@ -172,4 +177,5 @@ def test_glm4():
# test_qwen3_next()
# test_ernie_thinking()
# test_tongyi_deepresearch()
test_glm4()
# test_glm4()
test_olmoe()
12 changes: 11 additions & 1 deletion tests/test_align/test_template/test_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -680,6 +680,15 @@ def test_minimind():
assert swift_response == jinja_response


def test_olmoe():
pt_engine = PtEngine('allenai/OLMoE-1B-7B-0924-Instruct')
# pt_engine = PtEngine('allenai/OLMoE-1B-7B-0125-Instruct')
swift_response = _infer_model(pt_engine)
pt_engine.default_template.template_backend = 'jinja'
jinja_response = _infer_model(pt_engine)
assert swift_response == jinja_response


if __name__ == '__main__':
from swift.llm import PtEngine, RequestConfig
from swift.utils import get_logger, seed_everything
Expand Down Expand Up @@ -732,4 +741,5 @@ def test_minimind():
# test_ernie_thinking()
# test_ring2()
# test_ling2()
test_minimind()
# test_minimind()
test_olmoe()