Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions examples/train/activation_cpu_offload/fsdp2.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
{
"_description": "FSDP2 configuration for distributed training (PyTorch native FSDP v2)",
"_requires": "torch>=2.4.0",
"_note": "This is the recommended configuration for multi-GPU training without CPU offloading. NOTE: When using FSDP2, do NOT use --gradient_checkpointing, use activation_checkpointing in fsdp_config instead.",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

The _note field contains a statement that is contradictory to the purpose of this configuration file. It says, "This is the recommended configuration for multi-GPU training without CPU offloading," but this file is specifically for demonstrating activation CPU offloading. This could be confusing for users. Please update the note to reflect the file's actual purpose.

Suggested change
"_note": "This is the recommended configuration for multi-GPU training without CPU offloading. NOTE: When using FSDP2, do NOT use --gradient_checkpointing, use activation_checkpointing in fsdp_config instead.",
"_note": "This is a configuration for multi-GPU training with activation CPU offloading. NOTE: When using FSDP2, do NOT use --gradient_checkpointing, use activation_checkpointing in fsdp_config instead.",


"_param_docs": {
"fsdp": "FSDP strategy string. Options: 'full_shard' (ZeRO-3 style, shards params+grads+optimizer), 'shard_grad_op' (ZeRO-2 style, shards grads+optimizer only). Add 'auto_wrap' to enable automatic layer wrapping. Add 'offload' to enable CPU offloading.",
"fsdp_version": "FSDP version. Use 2 for PyTorch native FSDP2 (recommended). FSDP2 uses DTensor for per-parameter sharding, supports LoRA/QLoRA natively.",
"auto_wrap_policy": "How to wrap model layers. 'TRANSFORMER_BASED_WRAP' wraps transformer decoder layers (from model._no_split_modules). 'SIZE_BASED_WRAP' wraps modules exceeding min_num_params.",
"cpu_ram_efficient_loading": "If true, only rank 0 loads full model weights, then broadcasts to other ranks. Reduces CPU RAM usage during initialization.",
"state_dict_type": "'SHARDED_STATE_DICT' (recommended): each rank saves its own shard without extra communication. 'FULL_STATE_DICT': gathers full model on rank 0 (higher memory, slower).",
"reshard_after_forward": "true = FULL_SHARD (ZeRO-3), reshards params after forward pass. false = SHARD_GRAD_OP (ZeRO-2), keeps params gathered during forward/backward.",
"activation_checkpointing": "Use FSDP's native activation checkpointing instead of gradient_checkpointing. This is the correct way to save memory with FSDP.",
"activation_cpu_offload": "true = offload activations to CPU. false = keep activations on GPU,can enable when using activation_checkpointing."
},
"fsdp": "full_shard auto_wrap",
"fsdp_config": {
"fsdp_version": 2,
"reshard_after_forward": true,
"auto_wrap_policy": "TRANSFORMER_BASED_WRAP",
"cpu_ram_efficient_loading": true,
"state_dict_type": "SHARDED_STATE_DICT",
"activation_checkpointing": false,
"activation_cpu_offload": true
}
}
54 changes: 54 additions & 0 deletions examples/train/activation_cpu_offload/train.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
#!/bin/bash
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

加一个 前后的显存占用对比吧

然后用8B的模型

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

CUDA_VISIBLE_DEVICES=0,1 \
NPROC_PER_NODE=2 \
swift sft \
--model 'Qwen/Qwen3-8B' \
--train_type lora \
--dataset 'AI-ModelScope/alpaca-gpt4-data-zh#500' \
--torch_dtype bfloat16 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--learning_rate 1e-4 \
--lora_rank 8 \
--lora_alpha 32 \
--gradient_checkpointing false \
--weight_decay 0.1 \
--target_modules all-linear \
--gradient_accumulation_steps 16 \
--eval_steps 100 \
--save_steps 5 \
--save_total_limit 2 \
--logging_steps 5 \
--max_length 2048 \
--output_dir output \
--system You\ are\ a\ helpful\ assistant. \
--warmup_ratio 0.05 \
--dataloader_num_workers 4 \
--fsdp './examples/train/activation_cpu_offload/fsdp2.json'


# --dataset 'AI-ModelScope/alpaca-gpt4-data-zh#500'
# activation_cpu_offload=true

# {'loss': 2.1327579, 'grad_norm': 1.72890568, 'learning_rate': 8.346e-05, 'token_acc': 0.58396158, 'epoch': 0.32, 'global_step/max_steps': '5/16', 'percentage': '31.25%', 'elapsed_time': '5m 28s', 'remaining_time': '12m 2s', 'memory(GiB)': 24.8, 'train_speed(iter/s)': 0.015218}
# Train: 31%|██████████████████████████████████████▍ | 5/16 [05:28<11:41, 63.77s/it][INFO:swift] Saving model checkpoint to /model/ljl/output/v45-20251231-160511/checkpoint-5
# {'loss': 1.51323957, 'grad_norm': 0.39210615, 'learning_rate': 3.455e-05, 'token_acc': 0.62368014, 'epoch': 0.64, 'global_step/max_steps': '10/16', 'percentage': '62.50%', 'elapsed_time': '10m 22s', 'remaining_time': '6m 13s', 'memory(GiB)': 24.87, 'train_speed(iter/s)': 0.016054}
# Train: 62%|████████████████████████████████████████████████████████████████████████████▎ | 10/16 [10:22<05:37, 56.26s/it][INFO:swift] Saving model checkpoint to /model/ljl/output/v45-20251231-160511/checkpoint-10
# {'loss': 1.36127844, 'grad_norm': 0.30676287, 'learning_rate': 1.09e-06, 'token_acc': 0.64411869, 'epoch': 0.96, 'global_step/max_steps': '15/16', 'percentage': '93.75%', 'elapsed_time': '15m 6s', 'remaining_time': '1m 0s', 'memory(GiB)': 24.87, 'train_speed(iter/s)': 0.016547}
# ...
# {'train_runtime': 962.7184, 'train_samples_per_second': 0.519, 'train_steps_per_second': 0.017, 'train_loss': 1.61728384, 'token_acc': 0.62789828, 'epoch': 1.0, 'global_step/max_steps': '16/16', 'percentage': '100.00%', 'elapsed_time': '16m 2s', 'remaining_time': '0s', 'memory(GiB)': 24.87, 'train_speed(iter/s)': 0.016624}
# Train: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16/16 [16:02<00:00, 60.16s/it]


# activation_cpu_offload=false

# {'loss': 2.15452981, 'grad_norm': 1.7536869, 'learning_rate': 0.0001, 'token_acc': 0.61792799, 'epoch': 0.06, 'global_step/max_steps': '1/16', 'percentage': '6.25%', 'elapsed_time': '46s', 'remaining_time': '11m 39s', 'memory(GiB)': 26.14, 'train_speed(iter/s)': 0.021458}
# {'loss': 2.13306689, 'grad_norm': 1.7279824, 'learning_rate': 8.346e-05, 'token_acc': 0.58295639, 'epoch': 0.32, 'global_step/max_steps': '5/16', 'percentage': '31.25%', 'elapsed_time': '2m 55s', 'remaining_time': '6m 26s', 'memory(GiB)': 26.59, 'train_speed(iter/s)': 0.028456}
# Train: 31%|██████████████████████████████████████▍ | 5/16 [02:55<05:59, 32.65s/it][INFO:swift] Saving model checkpoint to /model/ljl/output/v44-20251231-155036/checkpoint-5
# {'loss': 1.51308346, 'grad_norm': 0.39151499, 'learning_rate': 3.455e-05, 'token_acc': 0.62377399, 'epoch': 0.64, 'global_step/max_steps': '10/16', 'percentage': '62.50%', 'elapsed_time': '5m 18s', 'remaining_time': '3m 10s', 'memory(GiB)': 27.73, 'train_speed(iter/s)': 0.031432}
# Train: 62%|████████████████████████████████████████████████████████████████████████████▎ | 10/16 [05:18<02:51, 28.58s/it][INFO:swift] Saving model checkpoint to /model/ljl/output/v44-20251231-155036/checkpoint-10
# {'loss': 1.36132231, 'grad_norm': 0.30557585, 'learning_rate': 1.09e-06, 'token_acc': 0.64442776, 'epoch': 0.96, 'global_step/max_steps': '15/16', 'percentage': '93.75%', 'elapsed_time': '7m 57s', 'remaining_time': '31s', 'memory(GiB)': 27.96, 'train_speed(iter/s)': 0.031437}
# ...
# {'train_runtime': 507.5282, 'train_samples_per_second': 0.985, 'train_steps_per_second': 0.032, 'train_loss': 1.61732693, 'token_acc': 0.63051608, 'epoch': 1.0, 'global_step/max_steps': '16/16', 'percentage': '100.00%', 'elapsed_time': '8m 27s', 'remaining_time': '0s', 'memory(GiB)': 27.96, 'train_speed(iter/s)': 0.031543}
# Train: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16/16 [08:27<00:00, 31.70s/it]
5 changes: 5 additions & 0 deletions swift/llm/train/sft.py
Original file line number Diff line number Diff line change
Expand Up @@ -265,6 +265,7 @@ def train(self, trainer):
@RayHelper.function(group='default')
def _prepare_callbacks(self):
from .callback import DynamicLayerActivationCallback, TrainerAdapterCallback
from swift.plugin import ActivationCpuOffloadCallBack
args = self.args
callbacks = []
if args.lisa_activated_layers > 0:
Expand All @@ -275,6 +276,10 @@ def _prepare_callbacks(self):
model=self.model)
lisa_callback.switch_active_layers() # Make trainable parameters printing a correct value
callbacks.append(lisa_callback)
# Check activation_cpu_offload from fsdp_config
fsdp_config = getattr(self.args, 'fsdp_config', {})
if isinstance(fsdp_config, dict) and fsdp_config.get('activation_cpu_offload', False):
callbacks.append(ActivationCpuOffloadCallBack())

if args.is_adapter and args.train_type == 'adalora':
callbacks.append(TrainerAdapterCallback(args))
Expand Down
2 changes: 2 additions & 0 deletions swift/plugin/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from .rm_plugin import rm_plugins
from .env import envs, Env
from .context_manager import context_managers, ContextManager
from swift.plugin.activation_cpu_offload import ActivationCpuOffloadCallBack

else:
_import_structure = {
Expand All @@ -34,6 +35,7 @@
'rm_plugin': ['rm_plugins'],
'env': ['envs', 'Env'],
'context_manager': ['context_managers', 'ContextManager'],
'activation_cpu_offload': ['ActivationCpuOffloadCallBack'],
}

import sys
Expand Down
Loading