|
| 1 | +/* |
| 2 | + * Copyright (c) 2012, 2016-2017, Sascha Schade |
| 3 | + * Copyright (c) 2013-2014, Kevin Läufer |
| 4 | + * Copyright (c) 2013-2017, Niklas Hauser |
| 5 | + * Copyright (c) 2017, Fabian Greif |
| 6 | + * Copyright (c) 2022, Andrey Kunitsyn |
| 7 | + * |
| 8 | + * This file is part of the modm project. |
| 9 | + * |
| 10 | + * This Source Code Form is subject to the terms of the Mozilla Public |
| 11 | + * License, v. 2.0. If a copy of the MPL was not distributed with this |
| 12 | + * file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 13 | + */ |
| 14 | +// ---------------------------------------------------------------------------- |
| 15 | + |
| 16 | +#include <modm/architecture/driver/atomic/queue.hpp> |
| 17 | +#include <modm/architecture/interface/atomic_lock.hpp> |
| 18 | +#include <modm/architecture/interface/interrupt.hpp> |
| 19 | +#include <modm/platform/core/resets.hpp> |
| 20 | + |
| 21 | +#include "../device.hpp" |
| 22 | + |
| 23 | +#include "uart_{{ id }}.hpp" |
| 24 | + |
| 25 | +// ---------------------------------------------------------------------------- |
| 26 | + |
| 27 | +namespace |
| 28 | +{ |
| 29 | +// If requested buffer size is larger than hardware buffer size create a |
| 30 | +// software queue for the remaining bytes. |
| 31 | +%% if options["buffer.rx"] > fifo_size |
| 32 | + static modm::atomic::Queue<uint8_t, modm::platform::Uart{{ id }}::RxBufferSize - {{ fifo_size }}> rxBuffer; |
| 33 | +%% endif |
| 34 | +%% if options["buffer.tx"] > fifo_size |
| 35 | + static modm::atomic::Queue<uint8_t, modm::platform::Uart{{ id }}::TxBufferSize - {{ fifo_size }}> txBuffer; |
| 36 | +%% endif |
| 37 | + |
| 38 | +} |
| 39 | + |
| 40 | +static inline bool tx_fifo_full() |
| 41 | +{ |
| 42 | + return uart{{ id }}_hw->fr & UART_UARTFR_TXFF_BITS; |
| 43 | +} |
| 44 | + |
| 45 | +static inline bool rx_fifo_empty() |
| 46 | +{ |
| 47 | + return uart{{ id }}_hw->fr & UART_UARTFR_RXFE_BITS; |
| 48 | +} |
| 49 | + |
| 50 | +void modm::platform::Uart{{ id }}::reset() |
| 51 | +{ |
| 52 | + Resets::reset(RESETS_RESET_UART{{ id }}_BITS); |
| 53 | +} |
| 54 | + |
| 55 | +void modm::platform::Uart{{ id }}::unreset() |
| 56 | +{ |
| 57 | + Resets::unresetWait(RESETS_RESET_UART{{ id }}_BITS); |
| 58 | +} |
| 59 | + |
| 60 | +void |
| 61 | +modm::platform::Uart{{ id }}::writeBlocking(uint8_t data) |
| 62 | +{ |
| 63 | + while (not write(data)); |
| 64 | +} |
| 65 | + |
| 66 | +void |
| 67 | +modm::platform::Uart{{ id }}::writeBlocking(const uint8_t *data, std::size_t length) |
| 68 | +{ |
| 69 | + while (length--) writeBlocking(*data++); |
| 70 | +} |
| 71 | + |
| 72 | +void |
| 73 | +modm::platform::Uart{{ id }}::flushWriteBuffer() |
| 74 | +{ |
| 75 | + while(!isWriteFinished()); |
| 76 | +} |
| 77 | + |
| 78 | +// ---------------------------------------------------------------------------- |
| 79 | +bool |
| 80 | +modm::platform::Uart{{ id }}::write(uint8_t data) |
| 81 | +{ |
| 82 | +%% if options["buffer.tx"] <= fifo_size |
| 83 | + // No software buffer necessary, use hardware buffer only. |
| 84 | + if (tx_fifo_full()) return false; |
| 85 | + uart{{ id }}_hw->dr = data; |
| 86 | + return true; |
| 87 | +%% else |
| 88 | + atomic::Lock lock; |
| 89 | + // Use hardware buffer and additional software buffer. |
| 90 | + uart{{ id }}_hw->imsc |= UART_UARTIMSC_TXIM_BITS; |
| 91 | + |
| 92 | + if (txBuffer.isEmpty() and !tx_fifo_full()) |
| 93 | + { |
| 94 | + // If software buffer is empty try to write to hardware buffer directly. |
| 95 | + // Do not write to hardware buffer while there is some data in the |
| 96 | + // software buffer to maintain byte order. |
| 97 | + // There is at least charsLeft bytes free in the FIFO |
| 98 | + uart{{ id }}_hw->dr = data; |
| 99 | + return true; // success |
| 100 | + } |
| 101 | + |
| 102 | + // Hardware buffer is full, so try software buffer. |
| 103 | + // Software buffer is empty so this will succeed. |
| 104 | + // Hardware buffer is not empty so at least one Tx interrupt |
| 105 | + // will be generated soon. |
| 106 | + |
| 107 | + return txBuffer.push(data); |
| 108 | +%% endif |
| 109 | +} |
| 110 | + |
| 111 | +// ---------------------------------------------------------------------------- |
| 112 | +std::size_t |
| 113 | +modm::platform::Uart{{ id }}::write(const uint8_t *buffer, std::size_t length) |
| 114 | +{ |
| 115 | + std::size_t written(0); |
| 116 | + |
| 117 | +%% if options["buffer.tx"] <= fifo_size |
| 118 | + // No software buffer necessary, use hardware buffer only. |
| 119 | + while ( !tx_fifo_full() and written<length ) |
| 120 | + { |
| 121 | + uart{{ id }}_hw->dr = *buffer++; |
| 122 | + written++; |
| 123 | + } |
| 124 | +%% else |
| 125 | + atomic::Lock lock; |
| 126 | + // Use hardware buffer and additional software buffer. |
| 127 | + uart{{ id }}_hw->imsc |= UART_UARTIMSC_TXIM_BITS; |
| 128 | + |
| 129 | + if (txBuffer.isEmpty()) |
| 130 | + { |
| 131 | + // If software buffer is completly empty try to write to hardware buffer directly. |
| 132 | + // Do not write to hardware buffer while there is some data in the |
| 133 | + // software buffer to maintain byte order. |
| 134 | + |
| 135 | + // First Copy max(length) chars from buffer to hardware FIFO. |
| 136 | + while (written < length and !tx_fifo_full()) |
| 137 | + { |
| 138 | + uart{{ id }}_hw->dr = *buffer++; |
| 139 | + written++; |
| 140 | + } |
| 141 | + } |
| 142 | + |
| 143 | + // If there is remaining data, put it into the software buffer |
| 144 | + while (written < length) |
| 145 | + { |
| 146 | + if (not txBuffer.push(*buffer++)) break; |
| 147 | + written++; |
| 148 | + } |
| 149 | +%% endif |
| 150 | + return written; |
| 151 | +} |
| 152 | + |
| 153 | +bool |
| 154 | +modm::platform::Uart{{ id }}::isWriteFinished() |
| 155 | +{ |
| 156 | +%% if options["buffer.tx"] > fifo_size |
| 157 | + return txBuffer.isEmpty() and ((uart{{ id }}_hw->fr & UART_UARTFR_BUSY_BITS) == 0); |
| 158 | +%% else |
| 159 | + return (uart{{ id }}_hw->fr & UART_UARTFR_BUSY_BITS) == 0; |
| 160 | +%% endif |
| 161 | +} |
| 162 | + |
| 163 | +std::size_t |
| 164 | +modm::platform::Uart{{ id }}::discardTransmitBuffer() |
| 165 | +{ |
| 166 | +%% if options["buffer.tx"] > fifo_size |
| 167 | + atomic::Lock lock; |
| 168 | + std::size_t count(0); |
| 169 | + // disable interrupt since buffer will be cleared |
| 170 | + uart{{ id }}_hw->imsc &= UART_UARTIMSC_TXIM_BITS; |
| 171 | + while(not txBuffer.isEmpty()) |
| 172 | + { |
| 173 | + ++count; |
| 174 | + txBuffer.pop(); |
| 175 | + } |
| 176 | + return count; |
| 177 | +%% else |
| 178 | + return 0; |
| 179 | +%% endif |
| 180 | +} |
| 181 | + |
| 182 | +bool |
| 183 | +modm::platform::Uart{{ id }}::read(uint8_t& data) |
| 184 | +{ |
| 185 | +%% if options["buffer.rx"] > fifo_size |
| 186 | + if (not rxBuffer.isEmpty()) |
| 187 | + { |
| 188 | + data = rxBuffer.get(); |
| 189 | + rxBuffer.pop(); |
| 190 | + // if the hardware buffer has been used, copy all into rxBuffer |
| 191 | + while(!rx_fifo_empty() and rxBuffer.isNotFull()) |
| 192 | + { |
| 193 | + rxBuffer.push(uart{{ id }}_hw->dr); |
| 194 | + } |
| 195 | + if (rxBuffer.isNotFull()) |
| 196 | + { |
| 197 | + atomic::Lock lock; |
| 198 | + uart{{ id }}_hw->imsc |= UART_UARTIMSC_RXIM_BITS; |
| 199 | + } |
| 200 | + return true; |
| 201 | + } |
| 202 | +%% else |
| 203 | + if ((uart{{ id }}_hw->fr & UART_UARTFR_RXFE_BITS) == 0) |
| 204 | + { |
| 205 | + // Receive data available |
| 206 | + data = uart{{ id }}_hw->dr; |
| 207 | + return true; |
| 208 | + } |
| 209 | +%% endif |
| 210 | + return false; |
| 211 | +} |
| 212 | + |
| 213 | +std::size_t |
| 214 | +modm::platform::Uart{{ id }}::read(uint8_t *buffer, std::size_t length) |
| 215 | +{ |
| 216 | + std::size_t ret = 0; |
| 217 | + |
| 218 | + while (ret < length) |
| 219 | + { |
| 220 | + if (not read(*buffer++)) break; |
| 221 | + ret++; |
| 222 | + } |
| 223 | + |
| 224 | + return ret; |
| 225 | +} |
| 226 | + |
| 227 | +std::size_t |
| 228 | +modm::platform::Uart{{ id }}::discardReceiveBuffer() |
| 229 | +{ |
| 230 | + std::size_t count(0); |
| 231 | +%% if options["buffer.rx"] > fifo_size |
| 232 | + while(!rxBuffer.isEmpty()) |
| 233 | + { |
| 234 | + ++count; |
| 235 | + rxBuffer.pop(); |
| 236 | + } |
| 237 | +%% endif |
| 238 | + while(!rx_fifo_empty()) |
| 239 | + { |
| 240 | + (void)uart{{ id }}_hw->dr; |
| 241 | + ++count; |
| 242 | + } |
| 243 | + return count; |
| 244 | +} |
| 245 | + |
| 246 | +// ---------------------------------------------------------------------------- |
| 247 | +MODM_ISR(UART{{ id }}_IRQ) |
| 248 | +{ |
| 249 | + // read Masked Interrupt Status Register, UARTMIS |
| 250 | + uint32_t IValue = uart{{ id }}_hw->mis; |
| 251 | + // clear |
| 252 | + uart{{ id }}_hw->icr = IValue; |
| 253 | +%% if options["buffer.tx"] > fifo_size |
| 254 | + if (IValue & UART_UARTMIS_TXMIS_BITS) |
| 255 | + { |
| 256 | + while (!txBuffer.isEmpty() and !tx_fifo_full()) |
| 257 | + { |
| 258 | + // Write to the hardware buffer |
| 259 | + uart{{ id }}_hw->dr = txBuffer.get(); |
| 260 | + txBuffer.pop(); |
| 261 | + } |
| 262 | + } |
| 263 | +%% endif |
| 264 | +%% if options["buffer.rx"] > fifo_size |
| 265 | + if (IValue & UART_UARTMIS_RXMIS_BITS) |
| 266 | + { |
| 267 | + while(!rx_fifo_empty()) { |
| 268 | + rxBuffer.push(uart{{ id }}_hw->dr); |
| 269 | + } |
| 270 | + if (rxBuffer.isFull()) { |
| 271 | + uart{{ id }}_hw->imsc &= ~UART_UARTIMSC_RXIM_BITS; |
| 272 | + } |
| 273 | + } |
| 274 | +%% endif |
| 275 | +} |
0 commit comments