Skip to content

An advanced, end-to-end enterprise solution that seamlessly automates the entire lifecycle of Power BI report creation and deployment to Microsoft Fabric, directly from diverse data sources.

License

Notifications You must be signed in to change notification settings

naveenjujaray/BI-Forge--AI-Powered-Power-BI-Report-Generator

Repository files navigation

Enterprise Power BI Report Generation & Publishing Solution πŸš€

An advanced, end-to-end enterprise solution that seamlessly automates the entire lifecycle of Power BI report creation and deployment to Microsoft Fabric, directly from diverse data sources.

Key Capabilities πŸ’Ό

  • Automated Data Pipeline πŸ”„

    • Connects directly to enterprise data sources (SQL, Oracle, APIs, Data Lakes)
    • Extracts, transforms, and profiles data with minimal configuration
    • Detects and handles schema drift automatically
  • Intelligent Report Generation 🧠

    • Leverages AI/ML to identify key insights and visualization patterns
    • Generates contextually relevant Power BI reports tailored to business needs
    • Incorporates predictive analytics and trend analysis
  • Seamless Fabric Integration ☁️

    • Direct publishing to Microsoft Fabric workspaces
    • Maintains data lineage and governance throughout the process
    • Supports both scheduled and real-time report updates
  • Enterprise-Grade Features 🏒

    • Robust security with Azure Key Vault integration
    • Comprehensive audit trails and compliance reporting
    • Scalable architecture handling high-volume data processing
    • Role-based access control and multi-tenant support

Benefits πŸ“ˆ

  • Accelerated Insights: Reduce report creation time from days to minutes
  • Data Consistency: Ensure reports always reflect current business conditions
  • Governance by Design: Maintain compliance with enterprise data policies
  • Resource Optimization: Free up data teams for high-value analysis tasks
  • Democratized Analytics: Enable business users with self-service reporting

Technical Architecture πŸ—οΈ

Built on a microservices framework with:

  • Connector abstraction layer for heterogeneous data sources
  • AI-powered data profiling and insight engine
  • Automated report generation with customizable templates
  • Secure deployment pipeline with validation gates

Ideal for enterprises seeking to scale their analytics capabilities while maintaining governance and security standards across their Power BI and Fabric ecosystem.

Disclaimer

GNU GPL v3.0 Notice & Disclaimer βš–οΈ

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License version 3.0 (GPL‑3.0) as published by the Free Software Foundation. πŸ“œ

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. πŸš«πŸ›‘οΈ

You should have received a copy of the GNU General Public License along with this program. If not, see: https://www.gnu.org/licenses/ πŸ”—

Your Responsibilities When Distributing or Modifying 🧭

  • Keep intact all copyright, license notices, and relevant attributions. 🧾
  • Provide the complete corresponding source code when conveying object/binary forms. πŸ“¦βž‘οΈπŸ’»
  • State the significant changes you made to the work (if any). ✍️
  • License your modifications and combined works under GPL‑3.0 when you distribute them. πŸ”
  • Provide "Installation Information" for User Products where required (anti‑tivoization). πŸ”§
  • Do not impose additional restrictions beyond those permitted by GPL‑3.0. 🚷

Good‑Practice Guidance (Non‑license Obligations) πŸ’‘

  • Comply with all applicable laws and regulations in your jurisdiction. 🌐
  • Protect secrets (API keys, credentials, tokens) and personal data appropriately. πŸ”
  • Validate all AI‑generated artifacts (SQL, code, and reports) before production use. βœ…
  • Maintain security controls and audit trails appropriate to your environment. πŸ›‘οΈπŸ“

License

This project is licensed under the GNU General Public License v3.0 - see the LICENSE file for details.


Table of Contents


Overview

BI Forge is an enterprise-grade AI-powered solution that leverages OpenAI's GPT-4 to automatically generate Power BI reports from diverse data sources. This system combines advanced AI capabilities with robust security, comprehensive data quality checks, and seamless enterprise integrations to streamline business intelligence workflows at scale.

Reporting with LLM

Ref: https://medium.com/@mail2mhossain/llm-powered-reporting-transforming-traditional-reporting-into-ai-driven-solutions-14a188793760

The system follows a sophisticated workflow:

  1. Data Ingestion: Connects to multiple data sources (SQL, NoSQL, APIs, cloud storage)
  2. Real-time Streaming: Processes streaming data from Kafka or Event Hubs
  3. Query Processing: Uses NLP to understand business requirements
  4. AI Generation: Creates SQL queries and Python scripts using GPT-4
  5. Security Validation: Sandboxes and validates all generated code
  6. Quality Assurance: Performs data profiling and drift detection
  7. Copilot Integration: Enhances reports with AI-powered insights
  8. Deployment: Publishes reports to Power BI with CI/CD integration
  9. Monitoring: Tracks performance and data quality in real-time

Features

Core Capabilities

  • Multi-Source Data Integration: Supports SQL Server, PostgreSQL, MySQL, Oracle, Snowflake, CSV, Excel, APIs, BigQuery, Salesforce, S3, OneLake, Synapse, and more
  • AI-Powered Report Generation: Leverages GPT-4 to transform natural language queries into Power BI reports
  • Real-time Streaming Analytics: Processes streaming data from Kafka or Azure Event Hubs
  • Enterprise Security: AES-256 encryption, JWT authentication, Azure Key Vault integration
  • Data Quality Assurance: Automated profiling, outlier detection, and rule-based validation
  • Schema Drift Detection: Real-time monitoring of structural changes in data sources
  • Compliance Management: Built-in support for GDPR, SOX, and HIPAA
  • Deployment Pipeline: Automated CI/CD through Dev, Test, and Prod environments
  • Performance Optimization: Redis caching, auto-scaling, and query optimization

Advanced Features

  • Natural Language Processing: Converts business questions into technical queries
  • Dynamic Data Profiling: Analyzes data quality metrics (null percentages, duplicates, outliers)
  • Code Security Sandbox: Executes generated Python scripts in isolated environments
  • Power BI Copilot Integration: AI-powered insights, write-back capabilities, and data agents
  • Interactive Dashboards: Low-code interface for report customization with mobile responsiveness
  • Advanced Analytics: Predictive modeling, natural language querying, and automated insights
  • Multi-Geo Support: Configurable data residency and regional compliance
  • Real-time Monitoring: Prometheus metrics and Application Insights integration
  • Kubernetes Integration: Auto-scaling and load balancing for enterprise deployments

Architecture

The system follows a modular, enterprise-grade architecture with clear separation of concerns:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                         BI Forge: AI-Powered Power BI Report Generator (Enhanced)                         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚   Data Sources   β”‚ β”‚    Streaming     β”‚ β”‚    AI Engine     β”‚ β”‚     Security     β”‚ β”‚    Monitoring    β”‚ β”‚
β”‚  β”‚                  β”‚ β”‚                  β”‚ β”‚                  β”‚ β”‚                  β”‚ β”‚                  β”‚ β”‚
β”‚  β”‚β€’ SQL Server      β”‚ β”‚β€’ Kafka           β”‚ β”‚β€’ GPT-4           β”‚ β”‚β€’ AES-256         β”‚ β”‚β€’ Structured Log  β”‚ β”‚
β”‚  β”‚β€’ PostgreSQL      β”‚ β”‚β€’ Event Hubs      β”‚ β”‚β€’ Query Gen       β”‚ β”‚β€’ JWT Auth        β”‚ β”‚β€’ Prometheus      β”‚ β”‚
β”‚  β”‚β€’ BigQuery        β”‚ β”‚β€’ Real-time Proc  β”‚ β”‚β€’ Code Gen        β”‚ β”‚β€’ Key Vault       β”‚ β”‚β€’ AppInsights     β”‚ β”‚
β”‚  β”‚β€’ Salesforce      β”‚ β”‚β€’ Batch Proc      β”‚ β”‚β€’ Validation      β”‚ β”‚β€’ RBAC Enhanced   β”‚ β”‚β€’ Alerting        β”‚ β”‚
β”‚  β”‚β€’ Input Sanitize  β”‚ β”‚β€’ Conn Recovery   β”‚ β”‚β€’ Error Handling  β”‚ β”‚β€’ Encrypted Data  β”‚ β”‚                  β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚   Data Quality   β”‚ β”‚     Copilot      β”‚ β”‚    Deployment    β”‚ β”‚  Error Recovery  β”‚ β”‚     Scaling      β”‚ β”‚
β”‚  β”‚                  β”‚ β”‚                  β”‚ β”‚                  β”‚ β”‚                  β”‚ β”‚                  β”‚ β”‚
β”‚  β”‚β€’ Profiling       β”‚ β”‚β€’ Insights        β”‚ β”‚β€’ CI/CD Pipeline  β”‚ β”‚β€’ Retry Logic     β”‚ β”‚β€’ Chunked Process β”‚ β”‚
β”‚  β”‚β€’ Drift Detect    β”‚ β”‚β€’ Write-back      β”‚ β”‚β€’ Stage Mgmt      β”‚ β”‚β€’ Fallback WF     β”‚ β”‚β€’ Memory Mgmt     β”‚ β”‚
β”‚  β”‚β€’ Validation      β”‚ β”‚β€’ Data Agents     β”‚ β”‚β€’ Approval WF     β”‚ β”‚β€’ Graceful Deg    β”‚ β”‚β€’ Auto-scale      β”‚ β”‚
β”‚  β”‚β€’ Quality Gates   β”‚ β”‚β€’ Terminology     β”‚ β”‚β€’ Rollback        β”‚ β”‚β€’ Circuit Breaker β”‚ β”‚                  β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚                           Enterprise Integration & Resilience Layer                                  β”‚ β”‚
β”‚  β”‚                                                                                                      β”‚ β”‚
β”‚  β”‚β€’ Azure DevOps  β€’ Microsoft Teams  β€’ Power Automate  β€’ Kubernetes    β€’ API Gateway                    β”‚ β”‚
β”‚  β”‚β€’ Multi-Geo     β€’ Compliance       β€’ Audit Logging   β€’ Health Checks β€’ Circuit Breakers               β”‚ β”‚
β”‚  β”‚β€’ Disaster Rec  β€’ Performance      β€’ Rate Limiting   β€’ Self-Healing  β€’ Connection Pooling             β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚                                    New Implementation Highlights                                     β”‚ β”‚
β”‚  β”‚                                                                                                      β”‚ β”‚
β”‚  β”‚πŸ”’ Enhanced Security: 600K PBKDF2 iterations, JWT improvements, Azure Key Vault integration           β”‚ β”‚
β”‚  β”‚πŸ”„ Robust Error Handling: Exponential backoff, retry mechanisms, fallback workflows                   β”‚ β”‚
β”‚  β”‚πŸ§  Memory Management: Chunked processing, garbage collection optimization                             β”‚ β”‚
β”‚  β”‚πŸ“Š Improved Monitoring: Structured logging, enhanced metrics, performance benchmarking                β”‚ β”‚
β”‚  β”‚πŸ”— API Resilience: Timeout handling, circuit breakers, connection pooling                             β”‚ β”‚
β”‚  β”‚βœ… Better Validation: Fixed syntax errors, input sanitization, type checking                          β”‚ β”‚
β”‚  β”‚πŸš€ Streaming Enhancements: Connection recovery, retry strategies, graceful degradation                β”‚ β”‚
β”‚  β”‚πŸ›‘οΈ Quality Assurance: Quality gates, comprehensive validation, error recovery                         β”‚ β”‚
β”‚  β”‚πŸ”„ Deployment Improvements: Rollback procedures, approval workflows, stage management                 β”‚ β”‚
β”‚  β”‚πŸ§© Copilot Enhancements: Terminology support, grounding context, data agents                          β”‚ β”‚
β”‚  β”‚πŸ“ˆ Scaling Capabilities: Auto-scaling, memory management, chunked processing                          β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Component Details

Component Status Grade What's Been Added
Architecture & Design βœ… Exceptional A+ Strong modularity across connectors, orchestration, and UI; abstract base classes for data sources with concrete implementations; clear separation between data access, business logic, and presentation layers
Configuration Management βœ… Enterprise-grade A+ Pydantic validation for all configuration objects; comprehensive configuration hierarchy with environment-specific settings; support for encrypted sensitive values
Security Implementation βœ… Robust A AES encryption for sensitive data; JWT token generation and verification; Azure Key Vault integration; conditional access policies; IP restrictions
Authentication & Authorization βœ… Implemented A- Centralized token acquisition for OpenAI/Power BI/OneLake clients; service principal validation; secure credential management with encryption
Data Quality Management βœ… Comprehensive A+ Automated data profiling; outlier detection using Z-score and IQR methods; rule-based validation; customizable quality thresholds; detailed reporting
Schema Drift Detection βœ… Proactive A+ Real-time schema monitoring; change detection with severity classification; alerting for structural changes; schema versioning
Enterprise Integration βœ… Complete A+ Azure DevOps CI/CD pipeline integration; Microsoft Teams notifications; Power Automate workflows; comprehensive audit logging
Compliance Management βœ… Thorough A+ Support for GDPR, SOX, and HIPAA; data classification; retention policies; audit trails; compliance reporting
Performance Optimization βœ… Advanced A+ Redis caching with cluster support; auto-scaling configuration; query optimization; incremental refresh capabilities
Monitoring & Alerting βœ… Comprehensive A+ Prometheus metrics collection; Application Insights integration; custom health checks; Teams notification system
Streaming Analytics βœ… Real-time A+ Kafka and Event Hub integration; batch processing; checkpoint management; real-time data processing capabilities
Copilot Integration βœ… AI-Enhanced A+ AI-powered insights generation; write-back capabilities; data agents; terminology management; grounding context
Multi-Geo Support βœ… Global A+ Configurable data residency; regional compliance; multi-geo capacities; home region configuration
Kubernetes Integration βœ… Scalable A+ Auto-scaling; load balancing; resource optimization; health checks; distributed processing

Prerequisites

  • Python 3.8+: Required for all core functionality
  • Power BI Workspace: With appropriate permissions for report deployment
  • OpenAI API Key: For GPT-4 integration
  • Azure Account: For enterprise features (Key Vault, DevOps, Monitoring)
  • Data Source Access: Credentials for all configured data sources
  • Redis Server: For caching (optional but recommended)
  • Kafka/Event Hub: For streaming analytics (optional)
  • Kubernetes Cluster: For advanced scaling (optional)

Installation

  1. Clone the repository

    git clone https://github.com/naveenjujaray/BI-Forge--AI-Powered-Power-BI-Report-Generation-Generator.git
    cd BI-Forge--AI-Powered-Power-BI-Report-Generation-Generator
  2. Install dependencies

    pip install -r requirements.txt
  3. Configure environment

    cp config.yaml.example config.yaml
    # Edit config.yaml with your credentials
  4. Verify installation

    python -c "from generate_report_v3 import PowerBIGenerator; print('Installation successful')"

Configuration

The system uses a comprehensive YAML configuration file. Key sections include:

Core Configuration

openai:
  api_key: "your-openai-api-key"
  model: "gpt-4"
  temperature: 0.3
  max_tokens: 2000
  max_retries: 3
  use_azure: false
  langsmith_project: "powerbi-automation"
  langsmith_endpoint: "https://api.smith.langchain.com"

fabric:
  tenant_id: "your-tenant-id"
  client_id: "your-client-id"
  client_secret: "your-client-secret"
  workspace_id: "your-workspace-id"
  pipeline_id: "your-pipeline-id"
  capacity_id: "your-capacity-id"
  api_endpoint: "https://api.fabric.microsoft.com/v1"

Data Sources

data_sources:
  sales_data:
    type: "sql_server"
    server: "your-server-name.database.windows.net"
    database: "your-database-name"
    username: "your-username"
    password: "your-password"
    connection_pool_size: 5
    connection_timeout: 30
  
  customer_data:
    type: "postgresql"
    host: "your-postgres-server"
    port: 5432
    database: "your-database"
    username: "your-username"
    password: "your-password"
    schema: "public"
  
  streaming_data:
    type: "kafka"
    bootstrap_servers: "kafka-server1:9092,kafka-server2:9092"
    topic: "powerbi-data-stream"
    consumer_group: "$Default"

Streaming Configuration

streaming:
  enabled: true
  kafka_bootstrap_servers: "kafka-server1:9092,kafka-server2:9092"
  kafka_topic: "powerbi-data-stream"
  event_hub_connection_string: "Endpoint=sb://your-namespace.servicebus.windows.net/;SharedAccessKeyName=your-policy;SharedAccessKey=your-key;EntityPath=your-eventhub"
  event_hub_name: "powerbi-events"
  consumer_group: "$Default"
  checkpoint_interval: 30
  batch_size: 100

Copilot Configuration

copilot:
  enabled: true
  write_back_enabled: true
  data_agents_enabled: true
  grounding_context: 
    - "Sales data includes daily transactions from all regions"
    - "Customer data contains demographic and purchase history"
  terminology:
    "Revenue": "Total income from sales before deductions"
    "Churn Rate": "Percentage of customers who discontinued service"
  api_key: "your-copilot-api-key"

Advanced Analytics Configuration

advanced_analytics:
  predictive_modeling: true
  natural_language_querying: true
  automated_insights: true
  model_path: "/models"
  confidence_threshold: 0.7

Security & Compliance

security:
  conditional_access: true
  mfa_required: true
  device_compliance_required: true
  ip_restrictions: []
  encryption_key: "your-encryption-key-here"
  api_key_rotation_days: 90

compliance:
  data_classification: "Confidential"
  retention_policy: "7_years"
  audit_logging: true
  standards: ["GDPR", "SOX", "HIPAA"]

Scaling Configuration

scaling:
  enabled: true
  min_workers: 2
  max_workers: 10
  scale_up_threshold: 0.7
  scale_down_threshold: 0.3
  cooldown_period: 300
  distributed_processing: true
  kubernetes_enabled: true
  load_balancing: true
  resource_optimization: true
  auto_scaling:
    enabled: true
    min_capacity: "F2"
    max_capacity: "F64"
    scale_triggers:
      cpu_threshold: 80
      memory_threshold: 85
      concurrent_users: 1000

Usage

Basic Example

from generate_report_v3 import PowerBIGenerator

# Initialize generator
generator = PowerBIGenerator(config_path="config.yaml")

# Connect to data sources
generator.connect_data_sources()

# Generate report from natural language query
report = generator.generate_report(
    "Create a sales dashboard showing monthly revenue by product category"
)

# Deploy to Power BI
deployment_result = generator.deploy_to_powerbi(report)

Streaming Analytics Example

# Initialize streaming processor
stream_processor = RealTimeDataProcessor(config)

# Register a processor for streaming data
def process_sales_data(data):
    # Process real-time sales data
    processed_data = transform_data(data)
    update_dashboard(processed_data)
    return processed_data

stream_processor.register_processor("sales_data", process_sales_data)

# Start processing streaming data
result = stream_processor.process_streaming_data({
    "source": "kafka",
    "data_source": "sales_data"
})

Copilot Integration Example

# Initialize Power BI Copilot
copilot = PowerBICopilot(config)

# Generate insights from data
insights = copilot.generate_insights(
    data=sales_dataframe,
    question="What are the key trends in our sales data?"
)

# Create a data agent for automated analysis
agent = copilot.create_data_agent({
    "name": "Sales Performance Analyzer",
    "description": "Analyzes daily sales performance",
    "dataset_id": "sales_dataset",
    "schedule": "daily",
    "tasks": ["trend_analysis", "anomaly_detection"]
})

# Generate DAX measures
dax_measures = copilot.generate_dax_measures(
    table_name="Sales",
    columns=["Date", "Product", "Revenue", "Quantity"],
    requirements="Create measures for total revenue, year-over-year growth, and top products"
)

Advanced Analytics Example

# Enable predictive modeling
if config.advanced_analytics.predictive_modeling:
    # Train a predictive model
    model = train_predictive_model(
        data=sales_data,
        target="Revenue",
        features=["Quantity", "Discount", "Region"]
    )
    
    # Generate predictions
    predictions = model.predict(future_data)
    
    # Add predictions to dashboard
    dashboard.add_predictions(predictions)

Command Line Interface

# Generate a report
python generate_report_v3.py --query "Show quarterly sales trends by region" --output sales_dashboard.pbit

# Deploy to specific stage
python generate_report_v3.py --deploy --stage "prod" --report-id "report-123"

# Process streaming data
python generate_report_v3.py --stream --source "kafka" --topic "sales-data"

Security Implementation

Data Protection

  • AES-256 Encryption: All sensitive data encrypted using PBKDF2 key derivation
  • Secure Storage: Azure Key Vault integration for credential management
  • Data Masking: Automatic masking of sensitive fields in logs and reports
  • API Key Rotation: Automatic rotation of API keys based on configured intervals

Authentication & Authorization

  • JWT Tokens: Configurable token expiration and validation
  • Service Principals: Azure AD authentication for enterprise environments
  • Conditional Access: IP restrictions and MFA enforcement
  • Role-Based Access Control: Granular permissions for different user roles

Code Security

  • Sandbox Execution: Generated Python scripts executed in isolated environments
  • Input Validation: Comprehensive validation of all user inputs
  • Audit Logging: Complete audit trail of all security events
  • Circuit Breaker Pattern: Prevents system overload during failures
# Example of secure credential handling
class SecurityHardeningManager:
    def encrypt_sensitive_config(self, config: Dict) -> Dict:
        # Encrypt sensitive fields using AES-256
        # Store in Azure Key Vault
        # Return config with secure references

Compliance

Supported Standards

  • GDPR: Data minimization, consent management, right to erasure
  • SOX: Financial controls, audit trails, change management
  • HIPAA: PHI protection, access controls, audit requirements
  • SOC 2: Security, availability, processing integrity controls

Compliance Features

  • Data Classification: Automatic classification (Public, Internal, Confidential)
  • Retention Policies: Configurable data retention and deletion
  • Audit Reporting: Comprehensive compliance documentation
  • Consent Management: User consent tracking and management
  • Multi-Geo Compliance: Data residency and regional compliance management
# Compliance reporting example
class FabricComplianceManager:
    def generate_compliance_report(self) -> Dict:
        return {
            "status": "compliant",
            "last_audit": datetime.now().isoformat(),
            "standards": ["GDPR", "SOX", "HIPAA"],
            "data_classification": "Confidential",
            "data_residency": "West Europe"
        }

Monitoring & Metrics

Performance Metrics

  • Request Metrics: Count, duration, and success rates
  • Data Quality: Quality scores and issue tracking
  • System Health: Memory usage, CPU utilization, connection counts
  • Business Metrics: Report generation times, deployment success rates
  • Streaming Metrics: Data processing rates, lag times, error counts

Monitoring Integration

  • Prometheus: Real-time metrics collection and alerting
  • Application Insights: Application performance monitoring
  • Azure Monitor: Infrastructure and dependency monitoring
  • Teams Notifications: Real-time alerts and notifications
  • Redis: Caching metrics and performance monitoring
# Prometheus metrics example
REQUEST_COUNT = Counter('powerbi_requests_total', 'Total Power BI requests', ['endpoint', 'status'])
DATA_QUALITY_SCORE = Gauge('powerbi_data_quality_score', 'Data quality score', ['data_source'])
STREAMING_DATA_PROCESSED = Counter('streaming_data_processed_total', 'Total streaming data processed', ['source'])
HUMAN_INTERACTION_COUNT = Counter('human_interaction_total', 'Total human interactions', ['type'])
COPILOT_ACTION_COUNT = Counter('copilot_action_total', 'Total Copilot actions', ['action'])

Multi-Geo Support

Global Deployment

  • Home Region Configuration: Designate primary region for data processing
  • Multi-Geo Capacities: Distribute workloads across multiple regions
  • Data Residency Compliance: Ensure data stays within specified geographic boundaries
  • Regional Failover: Automatic failover to secondary regions during outages

Configuration

multi_geo_config:
  home_region: "West Europe"
  multi_geo_capacities: 
    - region: "North Europe"
      capacity_id: "capacity-ne-01"
    - region: "West US"
      capacity_id: "capacity-wus-01"
  data_residency_compliance: "GDPR"

Benefits

  • Compliance: Meets regional data protection requirements
  • Performance: Reduces latency by processing data closer to users
  • Resilience: Geographic redundancy for disaster recovery
  • Scalability: Distributes load across multiple regions

Enterprise Integrations

Azure DevOps

  • CI/CD Pipeline: Automated deployment through Dev, Test, and Prod environments
  • Artifact Management: Store and version report artifacts
  • Work Item Tracking: Track report requirements and issues
  • Test Automation: Automated testing of generated reports

Microsoft Teams

  • Notifications: Real-time alerts for report generation and deployment
  • Collaboration: Discuss reports and provide feedback within Teams
  • Approvals: Streamlined approval workflows within Teams channels
  • Bots: Interactive bots for report generation and management

Power Automate

  • Workflow Automation: Automate business processes based on report insights
  • Data Synchronization: Keep data sources synchronized
  • Approval Workflows: Custom approval processes for report deployment
  • Notification Systems: Custom notification rules and actions

Configuration

integrations:
  azure_devops_project: "https://dev.azure.com/your-org/your-project"
  teams_webhook: "https://outlook.office.com/webhook/your-webhook-url"
  key_vault_url: "https://your-key-vault-name.vault.azure.net/"

Scaling & Performance

Auto-Scaling

  • Dynamic Worker Management: Automatically scale workers based on load
  • Resource Optimization: Optimize resource utilization across the system
  • Kubernetes Integration: Native support for Kubernetes deployments
  • Load Balancing: Distribute requests across multiple instances

Performance Optimization

  • Query Optimization: Advanced query optimization techniques
  • Incremental Refresh: Refresh only changed data to improve performance
  • Caching Strategy: Multi-level caching for frequently accessed data
  • Connection Pooling: Efficient management of database connections

Configuration

scaling:
  enabled: true
  min_workers: 2
  max_workers: 10
  scale_up_threshold: 0.7
  scale_down_threshold: 0.3
  cooldown_period: 300
  distributed_processing: true
  kubernetes_enabled: true
  load_balancing: true
  resource_optimization: true
  auto_scaling:
    enabled: true
    min_capacity: "F2"
    max_capacity: "F64"
    scale_triggers:
      cpu_threshold: 80
      memory_threshold: 85
      concurrent_users: 1000
  caching:
    redis_cluster:
      enabled: true
      nodes: 3
      memory_per_node: "8GB"
  performance_optimization:
    query_timeout: 300
    max_concurrent_queries: 50
    incremental_refresh: true

Development

Project Structure

πŸ“ Project Root
β”œβ”€β”€ πŸ“ .dist/
β”œβ”€β”€ πŸ“ .venv/
β”œβ”€β”€ πŸ“ ai_agents/
β”‚   β”œβ”€β”€ πŸ“„ __init__.py
β”‚   β”œβ”€β”€ πŸ“„ agent_framework.py
β”‚   β”œβ”€β”€ πŸ“„ specialized_agents_continued.py
β”‚   └── πŸ“„ specialized_agents.py
β”œβ”€β”€ πŸ“ archive/
β”‚   β”œβ”€β”€ πŸ“„ generate_report_v1.py
β”‚   └── πŸ“„ generate_report_v2.py
β”œβ”€β”€ πŸ“ assets/
β”œβ”€β”€ πŸ“ powerbi_generator/
β”‚   β”œβ”€β”€ πŸ“„ __init__.py
β”‚   └── πŸ“„ pbip_generator.py
β”œβ”€β”€ πŸ“„ __init__.py
β”œβ”€β”€ πŸ“„ config.yaml
β”œβ”€β”€ πŸ“„ example_usage.py
β”œβ”€β”€ πŸ“„ generate_report_v3.py
β”œβ”€β”€ πŸ“„ LICENSE
β”œβ”€β”€ πŸ“„ README.md
β”œβ”€β”€ πŸ“„ requirements.txt
└── πŸ“„ workflow_orchestrator.py

Development Setup

  1. Install development dependencies:

    pip install -r requirements-dev.txt
  2. Run tests:

    pytest tests/ --cov=generate_report_v3
  3. Format code:

    black generate_report_v3.py
    isort generate_report_v3.py

Key Dependencies

  • Core: pandas, numpy, pydantic
  • AI: openai, scikit-learn, langchain
  • Security: pycryptodome, PyJWT
  • Cloud: azure-identity, boto3, google-cloud-bigquery
  • Monitoring: prometheus-client, redis
  • Streaming: kafka-python, azure-eventhub
  • Web: requests, aiohttp, fastapi

Contributing

Please follow these steps:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Development Guidelines

  • Follow PEP 8 style guidelines
  • Write comprehensive tests for new features
  • Update documentation for API changes
  • Ensure all security best practices are followed
  • Test with multiple data sources and configurations

Made with ❀️ by Naveen Jujaray

About

An advanced, end-to-end enterprise solution that seamlessly automates the entire lifecycle of Power BI report creation and deployment to Microsoft Fabric, directly from diverse data sources.

Topics

Resources

License

Stars

Watchers

Forks

Languages