Skip to content

ncu-dart/DART_predicting_users_demographic_information

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Predicting user's demographic information and personality through their browsing history

Data pre-processing:

  1. all_user_csv_out_2.py (browsing history to web categories)
  2. update_all_user_v3.py (merge some web categories)
  3. user_daily_v4.py (output users feature with categories ratio)
  4. user_daily_v5.py (output users feature with time session frequency)

Demographic information prediction:

  1. supervise_demo_KNN.py (predicting user's demographic information in k-NN)
  2. supervise_demo_RF.py (predicting user's demographic information in random forests)
  3. supervise_demo_LR.py (predicting user's demographic information in logistic regression)
  4. supervise_demo_SVM.py (predicting user's demographic information in SVM)
  5. kms_demo_KNN.py (predicting user's demographic information in clustering with k-NN)
  6. kms_demo_RF.py (predicting user's demographic information in clustering with random forests)
  7. kms_demo_LR.py (predicting user's demographic information in clustering with logistic regression)
  8. kms_demo_SVM.py (predicting user's demographic information in clustering with SVM)

Big-six personality prediction:

  1. supervise_pr_SVM.py (predicting user's big-six personality in SVR)
  2. supervise_pr_Lasso.py (predicting user's big-six personality in Lasso regression)
  3. supervise_pr_Ridge.py (predicting user's big-six personality in Ridge regression)
  4. supervise_pr_EN.py (predicting user's big-six personality in Elastic net regression)
  5. kms_pr_pred.py (predicting user's big-six personality in clustering with some regression models)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%