This repository investigates the influence of different data augmentation strategies on MRI training performance.
This repository contains:
- A nnUNet trainer with extensive data augmentations
- A basic Monai segmentation script incorporating data augmentations
- A script generating augmentations from input images and segmentations
-
Open a
bash
terminal in the directory where you want to work. -
Create and activate a virtual environment using python >=3.10 (highly recommended):
- venv
python3 -m venv venv source venv/bin/activate
- conda env
conda create -n myenv python=3.10 conda activate myenv
-
Install this repository using one of the following options:
- Git clone (for developpers)
Note: If you pull a new version from GitHub, make sure to rerun this command with the flag
--upgrade
git clone [email protected]:neuropoly/AugLab.git cd AugLab python3 -m pip install -e .
-
Install PyTorch following the instructions on their website. Be sure to add the
--upgrade
flag to your installation command to replace any existing PyTorch installation. Example:
python3 -m pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu118 --upgrade
Scripts developped in this repository use JSON files to specify image and segmentation paths: see this example.
To track parameters used during data augmentation, JSON files are also used: see this example