Skip to content

ngusadeep/cnn-cifar10-classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ–ΌοΈ Image Classification with CNN on CIFAR-10 using TensorFlow

πŸ”Ž Overview

This project demonstrates image classification using a Convolutional Neural Network (CNN) built with TensorFlow and Keras on the CIFAR-10 dataset. CIFAR-10 contains 60,000 32x32 RGB images across 10 categories such as airplanes, cars, birds, cats, and dogs.

The notebook image-classification-CNN-cifar10.ipynb guides you through:

  • Loading and preprocessing the CIFAR-10 dataset
  • Designing and training a CNN model
  • Evaluating model performance with accuracy and loss metrics
  • Visualizing predictions on sample images

This project showcases how deep learning can automatically learn image features and make accurate predictions, providing a practical introduction to CNNs and TensorFlow for image recognition.

πŸ“‚ Project Structure


.
β”œβ”€β”€ image-classification-CNN-cifar10.ipynb   # Main notebook
β”œβ”€β”€ README.md                                # Project description
└── requirements.txt (optional)              # Python dependencies

πŸš€ Installation & Setup

git clone https://github.com/your-username/cnn-cifar10.git
cd cnn-cifar10
pip install -r requirements.txt
jupyter notebook image-classification-CNN-cifar10.ipynb

✨ Future Improvements

  • Data augmentation for better generalization
  • Deeper CNN architectures (ResNet, VGG)
  • Hyperparameter tuning
  • Deployment as a web API with Flask/FastAPI

πŸ“Œ Requirements

Python 3.8+, TensorFlow, Keras, NumPy, Matplotlib, Jupyter Notebook

πŸ“ License

MIT License


About

CNN-based image classifier using TensorFlow and Keras to recognize images from the CIFAR-10 dataset.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published