Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 97 additions & 3 deletions 170327-nipype/notebooks/rfmri_group_1/PreprocessingWorkflow.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,23 +2,117 @@
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"# Import workflow elements\n",
"from nipype import Node, Workflow"
"from nipype import Node, Workflow\n",
"from IPython.display import Image\n",
"import warnings\n",
"from nipype.interfaces import fsl"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# Import necessary interfaces"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# make nodes\n",
"node_bet = Node(fsl.BET (functional=True), name='fsl_bet')\n",
"# gonna want plots and mat\n",
"node_mcFlirt = Node(fsl.MCFLIRT(save_mats=True,save_plots=True), name='motion_corr')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"# define workflow\n",
"wf = Workflow(name=\"group_workflow\")\n",
"wf.base_dir = 'Group_test'"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"# workflow connect\n",
"wf.connect([\n",
" (node_bet, node_mcFlirt, [(\"out_file\", \"in_file\")])\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"170329-15:02:38,663 workflow INFO:\n",
"\t Generated workflow graph: Group_test/group_workflow/graph.dot.png (graph2use=hierarchical, simple_form=True).\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPYAAAC5CAIAAACUflUmAAAABmJLR0QA/wD/AP+gvaeTAAAgAElE\nQVR4nO2deVgT1/7/z4QEAlnZSUIIIAiyCIgiiwuihVpRUUsfsdalPlV7u1xtb13a+3yfx273dnvq\n9dY+VW+rva3WpVKrXlsUcAFBUAQrO7IJJAEChCRkX35/nMf5pQnEANkI8/ojT+Zk5pz3mXnPmZmT\nM+eD6HQ6gIHhvODsLQADw7pgFsdwcjCLYzg5eHsLcB5GRkbkcvnw8PDIyIhSqVQqlSMjI+ivcrlc\nJpOhiy4uLlQqFV0kEAhkMhkA4OnpSSQS3d3d6XQ6giC21O+sYBY3hU6n6+3t5XK5fD5/YGBgcHBQ\n/1MgEAiFQolEIpfLRSKRxUtHvU4ikby8vLy9veGnj48P+oXFYjGZTDc3N4uX7jQgWI8KAEAkErW2\ntra2tnZ0dHR3d/f09HC53K6uLj6fr1Kp4Dpubm6oyeCnt7e3p6cnmUwmEolUKpVEIhGJRBqN5u7u\nTiQScTgcjUZDi8Dj8RQKBV0ctY3X6XRCoVAmk8nl8qGhIZg4PDwskUj0z6uBgYGBgQGxWIxu7uvr\ny2Aw2Gw2k8lksVhBQUEzZsyYMWMGk8nELgXTzuJKpbKhoaG2traxsbGtrQ06WyAQAABwOFxgYCA0\nCpPJDAwMhL5hMBhMJpNEItlb+59QqVT9/f3d3d08Hq+rq4vH43V3d3O5XC6X297eDm+KiERiaGgo\ntHt4eHh0dHRsbKyXl5e9tdsU57f448eP79+/X1tb+/Dhw9ra2ubmZrVaTSAQwsLCwsLC4OGHPggJ\nCXF1dbW3XsvA5XJb9Whra2tubh4aGgIAMJnMmJiY2NjYmJiY2bNnx8bGEggEe+u1Ik5ocbFY/ODB\ng6qqqqqqqpKSko6ODgAAg8GIjo6OiopKTEyMjo6Ojo4mEon2VmprhoaG6urqqqqq6uvr6+rqqqur\npVIpgUCYPXt2WlpaYmJiYmJiVFSUk93bOInFh4aGbty4UVxcXFxc3NjYqNVq2Wx2UlLS/Pnzk5KS\n5syZo38fjAHRaDSNjY2VlZWVlZUVFRUPHz5Uq9V+fn6LFi3KyMjIyMiIiIiwt0YLMIUtrlQqb926\nde3ateLi4urqap1Ol5CQkJGRkZaWlpSUxGAw7C1wiiGVSqurq+/cuXPjxo2bN2+KxWIWi7V06dKM\njIzly5f7+fnZW+AEmXoWl0qlRUVF586du3TpklAoDA0NXbZs2bJlyzIyMry9ve2tzknQaDQ1NTWF\nhYWFhYWlpaVKpTIhISE7O3v9+vWRkZH2Vjc+pozFZTLZ+fPnf/rpp6KiIrVavWjRotWrV69evTo4\nONje0pwcqVRaUFBw4cKFy5cvDw4OxsbGrlu3bsuWLRwOx97SzEPn8FRUVOzcuZNGoxEIhFWrVp04\ncUIgENhb1HREpVIVFRW98cYb/v7+OBxu2bJlJ0+ehN35jozjWlyhUPznP/+JiYkBAERHR3/xxRe9\nvb32FoWh0+l0SqXy119/Xb16NYFAoNPpu3fvfvz4sb1FjYkjWlwkEn3++ecsFsvV1fXll1++c+eO\nvRVhjA6fz//000/ZbLarq+uWLVvq6+vtrWgUHMviCoXik08+8fT0pFAob7/9dnd3t70VYTwdhUJx\n/PjxWbNm4XC43Nzcjo4Oeyv6Ew5k8YKCgoiICA8Pj//7v/8bHBy0txyM8aHRaPLz8+ERPHDggOPc\nozuExQcGBp5//nkAwNq1ax2tDcAYF/A6TCaTQ0JCbt68aW85Op0jWLyqqiokJITNZhcUFFgqT5lM\n9t5774WGhrq4uJjTcTTe/iU79kdVVlamp6fD75OvZnp6emVlpcVF9vT05OTk4PH4L774QqvVWjz/\ncWFni584cYJIJC5btqyvr8+C2e7ZswcA8OGHH46MjBQUFJjjxfFa1i4WP3bsGJ1O/+WXX+Di5KuZ\nn59Po9GOHj1qcalarfbTTz/F4/G5ublSqdTi+ZuPPS3+9ddfIwiyb98+tVpt2ZzhvxIDAwPmb2IX\ni48rkytXriAIcvr0aTTFItX88ccfEQS5cuWK+ZmYz/Xr1729vZctW2ZHl9vN4pcvX8bhcB999JE1\nMsfhcOP1n4NbXKFQsNnstLQ0/URLVTM5OTkoKEipVI4rKzOprq728vLasGGDNTI3B/tYnM/ne3l5\nbd261Ur5T8B/Dm7xU6dOAQAOHz48SQ2jbnLo0CEAwE8//TSurMzn2rVrLi4u3377rZXyN419LL5t\n2zYOhyMWi62RucEIhb179+p0OqFQuGvXrpCQEDc3Ny8vr5SUlLfffruiosJgq/GW0tnZmZOTA99q\ne+655wz+++jt7d25cyeLxSIQCEwm85VXXuHxeGPp3LZtm4ni1q9fDwAwFmyRapaXlwMA8vLyzK/+\neNm9e7e3t7eVjrhp7GDxvr4+Nze3Y8eOWa8I4wO5evVqAMDBgwclEolCoWhsbFyzZo3+OhOzeFZW\n1s2bN0UiUWFhYUBAgKenZ3t7O1yBz+dzOBx/f/+CggKxWHzr1i0OhxMSEjI0NDSBQuHQbT6fb41q\ncrlcAEBkZKT51R8vg4ODJBLp3//+t/WKGAs7WPzkyZOurq5WPaGNDySc0eHcuXNoSk9Pz+QtjnZu\n6HS6EydOAAA2b94MF3fs2AEA0L865+fnAwDefffdCRQKp6CQy+XGGvRTJlZN+KInhUIxR8mEycvL\ny8zMtGoRo2IHi+/fvz8+Pt6qRRgfyK1bt8JENpu9bdu2M2fOKBQK05uYU4T+mMfu7m4AAIPBgItM\nJhMAwOVy0RXgS9CxsbETKBQ+WRr0MVuqmhqNBgDg4uJijpIJ8+WXX6I7x5bYweJvvPHGwoULrVqE\n8YHUarXnz59ft26dp6cn/DUoKAi+KzTWJuMtQi6XAwDweDxcxONHn6PGw8NjAoWa2YpPrJq2acW/\n/fZbaxcxKnaw+AcffDBjxgyrFmHCOhqN5tatW1lZWQAA/YvJxCwuFArRFINWnMViAQBMD7Yxv1Az\n78VRxlVNG9yL63S6AwcOhIWFWbWIUbHDnIYpKSlw2gNbFoogCLQgDodbuHDhmTNnAAANDQ2TzBb2\nRUAKCwsBAJmZmXAxJycHAHDjxg399UtKSpKTk9FFDw8PAIBKpZJKpabfyktISAAAdHZ2mtYzsWrC\nbOPj402vNkkKCwtTUlKsWsTo2P6sUiqVgYGBu3fvtl4RxlUDAGRlZdXW1srlcj6fv3//fgDAqlWr\nTGxiThGLFi26ffu2WCwuKipiMBj6PSoCgSA8PJzBYJw7d04gEIhEokuXLoWEhNy4cQPNBNq9tLT0\n9OnT2dnZJoo7efIkMKNffGLVhP3ip06dMr/64+X+/fsAgN9//916RYyFffrFv/rqK1dX14cPH1oj\n81HP4dLS0s2bNwcHBxMIBBqNFhcX99FHH42MjBhvMq4i6urqMjMzyWQyiURavny5Qb/44ODgW2+9\nFRISQiAQ/P39V65cWV5err/C3bt34+LiPDw8kpOTm5qaTJSoUCgCAwMXLFhgjWomJycHBgYaPJha\nELVanZaWNn/+fLsMybKPxdVqdUpKSmRkpP69LIZpLl++bDBGxSLAMSqXL1+2bLb67Nmzh0gk1tTU\nWK8IE9htjEpPTw+TyUxNTRWJRPbSMOU4cuSI/kjDyZOfn0+lUr/55htLZWjMJ598giDI999/b70i\nTGPPkYYNDQ0MBiMmJsb0NRpDn4qKisWLF1sqt8WLF+v/vW9ZFArFX/7yFwRB7PKnJoqdx4t3dXUl\nJydTKBT9P+TsjqM9oE9Furu7U1JSHOHI2v+AyeXyHTt2IAjy8ssvY9NIOAEajebo0aM+Pj6zZs1q\naGiwtxwHsDjk7NmzgYGBdDr9X//6l0qlsrccjAlSXl4+d+5cPB6/a9cuB3nKchSL63Q6iUSyf/9+\nNze3qKio//73v1YaoY9hJaqqqnJzcxEEycjIqK2ttbec/48DWRzS0tLy0ksvEQgEDodz6NAhtE8X\nw2G5fv06HCkwZ86c/Px8e8sxxOEsDuno6Hj99dc9PDx8fHx27dr1xx9/2FsRhiGDg4NfffXVnDlz\nAABLliyx4AQKlsVBLQ7p6+uDY7YAAHPnzj18+LD++wQYdkGj0RQUFKxfv55IJJJIpM2bN1uv29Ei\nOLTFUe7du7d9+3Yymezi4pKWlnbw4EFsLjgbo1KpSkpK3nzzTTgOPjEx8ciRIw7yQGmaKTO/OABA\nJBJdvHjxwoULv//+u0wmmz9/fk5OzrPPPhsbG+tk4Wkch97e3uLi4l9//fW3334Ti8WJiYlr1qx5\n/vnnZ86caW9p5jKVLI4ik8muXbt24cKFS5cuCQQCX1/fJUuWwPA04eHh9lY35REKhTdv3oSBk+rq\n6lxcXBYvXpyTk5OTkxMYGGhvdeNmSlocRavV1tTUwINRUlIikUjgcLykpCQYxcrd3d3eGqcAOp2u\nubm5oqKisrLyzp07cLxUXFwcbDUWLVoE3zmaokxti+ujUqkqKyuvX79+586dysrK/v5+PB4fGxub\nnJw8Z86c2bNnR0VFTelDZUE0Gk1ra+vDhw9rampgxDahUOjm5paQkJCUlLRo0aL09HSnCZzkPBY3\noK2tDTZLlZWVNTU1UqkUQZCQkJCYmJjo6OjZs2dHRkbOmDFjOgQrVKvVnZ2dLS0tMLhubW1tfX29\nXC7H4XBhYWFo6Mb4+Hiniayrj9NaXB+tVtvW1vbw4cO6ujr42dzcDIPb+/v7wwDKMJJyaGgom832\n9/efogGFBQIBj8drb29vbW199OgRDJ3c2dkJK4vGTYaRwqOiouCbdc7NtLC4MUqlEg2ejVqho6ND\nqVQCAHA4nL+/P4PBYLFYLBaLwWAwmUxvb29vb28vLy/46ebmZnvZAwMDAwMDg4OD8ItAIOjq6uLz\n+d3d3Vwul8vlwlkAAAAMBgMNfw4JDw9HX8ufVkxTi4+KRqPhcrldXV1cLrenpweapru7m8fj8Xg8\nkUikvzKZTIZe9/DwcHd3p9PpRCLRw8ODSqUSiUR4008kEvWfd+l0Otq5KZFIYMsKANBqtcPDwwAA\npVI5MjIiFovlcrlYLIYzWg0PD0skEuhp/YNFJBK9vb3ZbDaDwQgMDERPSCaTyeFwpkPzbCaYxc1F\npVLB5lP/c2BgQCaTyWQyoVAol8ulUunw8LBMJpNKpWAMH0Pc3d2JRCK6CN2Px+MpFAqZTCYSiVQq\nVf8LPJ18fHzQiwmJRLLxHpiiYBa3KR9//PHx48dbWlrsLWQaYYd5VDAwbAlmcQwnB7M4hpODWRzD\nycEsjuHkYBbHcHIwi2M4OZjFMZwczOIYTg5mcQwnB7M4hpODWRzDycEsjuHkYBbHcHIwi2M4OZjF\nMZwczOIYTg5mcQwnB7M4hpODWRzDycEsjuHkYBbHcHIwi2M4OZjFMZwczOIYTg5mcQwnB7M4hpOD\nWRzDycEsjuHkYBbHcHIwi2M4OZjFMZwcbAp96yISiZ577jk0PsTg4ODw8HBISAhcRBDkgw8+WL16\ntf0EOj94ewtwcohE4h9//CEWi/UTa2tr0e8KhcLmoqYX2I2KdXF1dX3hhRfGCnHo7u6+cuVKG0ua\nbmAWtzobNmxAg1rpQyAQnn/+eSyEubXBLG510tPTfX19jdNVKtWGDRtsr2e6gVnc6uBwuI0bNxrf\nq9Dp9KVLl9pF0rQCs7gtyMvLM7hXIRAIGzZsmKJhyKcWmMVtwbx589COQohKpcrLy7OXnmkFZnEb\n8dJLL+m32QEBAWlpaXbUM33ALG4j9O9VCATC5s2bEQSxr6RpAmZxGxEZGRkTEwNtjd2l2BLM4rZj\n06ZNLi4uAIDQ0NC4uDh7y5kuYBa3HevXr9doNAiCbNmyxd5aphHYGJWJIxKJNBqNRCJRqVQymUwu\nlwMAlErlyMiIwZrorzNnzmxqaqLRaOfOncPhcDQazWBNAoFAJpMBAOivdDodQRAKhYLHYwdrIkz3\nkYZCoVAgEAwMDAw/QSKRiMViiUQiFArFYjH8LhaLh4aGtFotHDM4NDRkF7UkEsnV1ZVIJLq7u5NI\nJDKZTKFQaDQalUqlUChwkU6nw+90Ot3b29vLy8vb23s6d8A7s8X7+/t7e3u5XC6fz+/t7e3v7x8w\nQqPR6G9Co9HIT/D09ISmIZPJVCqVRqPhcDhPT08AAJVKdXFxIZPJBALBw8PDzc3Nzc3Nw8MDAIAg\nCJ1ON1CCx+MpFIpBokKhkEqlBoloe69Wq8VisU6nEwqFAAChUKjT6cRisVqtHhkZUSqV8NyTSCQi\nkWh4eBhdhGemWq3Wz5ZKpfr4+Pj4+Hg/wcvLy8/Pj8lk+vv7s1gsPz8/V1dXC+x0x2NqW1ylUnV1\ndXV0dHR2dnZ1dfH5/J6enr6+vu7u7r6+PqVSCVcjEol+fn5+fn7eo+Hr6+vt7U2j0YxvG6Yucrlc\nKBTqn8wCgUAgEAwODqIpvb29+pcjuItYLFZAQACDwWAwGCEhIcHBwRwOh0ql2q8qk2VqWFyn03V1\ndbW0tHR2dnboweVyYTPs7u7O4XD8/PwCAwPR48RkMuHRgk0vhjFyuZzP58MLnX7r0N3dzePx+vv7\n4WpeXl4cDidYj9DQ0PDwcDc3N/vqNwdHtLhCoXj06FF9fX1bW1tdXV19fX1zczN8q8DNzY3FYoU+\ngcFgMJnM0NDQ4OBgHA7rHbIwCoWip6en7QlcLpfH47W1tXV0dGi1WgAAg8GIjo6GxyIqKio6OtoB\nD4T9La7RaJqamh48ePDgwYOampra2tqenh4AgKura2hoaGRk5MyZMyMiIiIiImbOnDnqqFQMGyOT\nyVpaWpqbm5ubm5uamhobG5ubm+EzA4VCiYyMjI+Pj4+Pj4uLmz17tvFDiI2xg8UVCsX9+/fv37+P\nelomkxEIhKioqLi4uNjY2FmzZkVERAQHB2PdZFOIvr4+6PXa2lrYYA0NDSEIEhoaCu2ekJAwf/58\n2zdSNrI4j8e7d+9eVVXV7du3b9++LZPJaDRaTExMdHR0VFRUYmJiYmIi9v6Lk8Hlcquqqurr6+vq\n6qqqqhobG7VaLYPBWLBgQVpaWmJiYlJSkg26caxo8fb29mvXrhUXF5eVlXV1dbm4uMTExKSmpiYn\nJ6ekpISHh1upXAzHRCgUlpeX37lzp7y8vKKiQiQSkcnkpKSkhQsXZmZmJiUlWemibWGLi8Xi69ev\nX7169erVqy0tLSQSadGiRampqampqfPmzbP7bRmGg6DRaOrr68vKysrLy69fv/748WMajbZ06dJn\nnnkmMzMzNDTUgmVZxuI9PT3nz5/Pz88vKyvTaDQJCQlQa2pq6pToV8KwL42NjdeuXbt69eqNGzck\nEklYWNiqVatyc3Pnz58/+SHHk7I4l8s9f/782bNny8rKyGTyqlWrVqxYsXTpUqzfA2NiqFSqsrKy\ngoKC/Pz8pqamoKCg3Nzc3NzcpKSkiXtdN36USuWZM2fS09NxOByVSn3xxRd//fVXmUw2gawwMMai\npqbm3Xffhc9sHA7nwIEDPB5vAvmMz+J8Pv/9999nMpkuLi45OTm//PIL5mwMa3P//v133nnHx8fH\n1dV1w4YN5eXl49rcXIu3t7dv2rTJ1dXV29t77969HR0d45eKgTFxZDLZd999N2fOHABAYmLixYsX\nzdzw6RYfGhras2cPkUgMDw//9ttvpVLp5KRiOBCVlZXp6enwu0wme++990JDQ+GrSU+9iTW+101P\nT6+srLSiXJ1Op9OVlZWtXbsWQZCMjIyqqqqnrm+qGlqt9vDhw3AQ5qFDh5RKpeV02pkFCxYsWLDA\n3irszLFjx+h0+i+//AIX9+zZAwD48MMPR0ZGCgoKzHlOM7B4fn4+jUY7evSotRTrcfv27ZSUFBwO\nt2nTpr6+PhNrjlkNPp+flZVFIBD27NkzNDRkBZG2YKzWCHbV216P43DlyhUEQU6fPo2mcDgcAMDA\nwID5mRjv3h9//BFBkCtXrlhM6NhotdozZ85wOBwGg3Ht2rWxVhvd4o2NjSEhITNmzKioqLCaQlsw\n4V4j50ahULDZ7LS0NP1EOEJwXPmMunuTk5ODgoJsds0XCoV5eXkuLi7ffPPNqCuMUqX29vaAgIDk\n5OT+/n4ry7M6mMVH5dSpUwCAw4cP6ydOYF+NusmhQ4cAAD/99NNkVY6H999/H0GQI0eOGP9kqE+p\nVMbGxiYkJIhEIpto0+n0Hlx6enrWrl1LJpO9vLw2bdokFArb29tXrlxJoVD8/f03b95scMvE4/G2\nb9/OYrEIBAKLxdqxYwefzzfOFrJt2zaD9Alk9fjx41WrVpHJZD8/vxdffFEgEJhfTZlM9o9//CM+\nPh6+CxcREbFjxw79LjAzNTx69GjNmjXo63OmfxqV9evXAwD0L9EG+2rv3r06nU4oFO7atSskJMTN\nzc3LyyslJeXtt9823sog8/LycgBAXl6e+XvGIhw4cACPx5eVlRmkG+r7/PPPPTw82trabCXsiQ4A\nAAAbN26sr68XCoWvvfYaAGDFihVr1qyBKa+++ioA4JVXXkE34fF4bDabyWQWFRWJRKLCwsKAgAAO\nh2Nsi7GKm0BWL774or6eLVu2mFlBkUg0d+5cCoVy7NgxPp8PB/PMmjULlWG+hmeeeeb27dtSqfTK\nlSvo5iZ+MiYiIgIAoJ/zqPsKRmg5ePCgRCJRKBSNjY1r1qzRX2fU3cvlcgEAkZGRZu4ZC5KVlTV7\n9mytVquf+Cd9Wq02LCxs9+7dthWm0z3ZWTdu3ICL8K0I/ZSuri4AAIvFQjd55ZVXAAA//PADmnLi\nxAkAwI4dOwyyHau4CWSF6mlvbwcAMJlMMyv41ltvQbvoJ96/fx+VYb6G69evj1WjUX8yBs5jIZfL\njXPQT4GvbJ47dw5NgcfFxCY6nU4mkwEAKBSKOUosS01NDQCgpKREP/FP+vh8vvm7ybLAnYXeHaEv\nxhukIAiCbsJgMAAAPT09aEp3d7fBaWCmxc3PCtUDY/To6zFNUFAQAKC9vX2sFczXMDIyMlaNRv3J\nGPhkadjaGe2rrVu3wkQ2m71t27YzZ84oFArTm+ieHCkXFxdzlFgcDofzz3/+Uz/lT/oaGhoAAH/8\n8YdtVel0o+2sp6bA4cX6Ox1Oz0AgEExkYsGsxsp8VOBMJibGO0ymOuMVY2YrrtVqz58/v27dOvT9\n7qCgoOrqatOF2rEV1+l0iYmJe/bs0U/505ukgYGBOByuqakJTAX8/PwAAAKBAE2B32G6vbIaC39/\nfwAAvE7aSwMKi8UCAMC3LU2AIMjatWt//vlngUBw69atrKysx48fo037WMCJK2ARNkalUrW2tgYH\nB+sn/sniZDI5IyPju+++s6muiQJjnRUVFaEphYWFaDoETt+jUqmkUqm3t/dkspok69atAwBcuHBB\nP7G8vDwpKclmGlASEhIAAJ2dnaZXQxAE3izhcLiFCxeeOXMGAAAv9SaA2cbHx1tG63g4f/68SCTK\nzs7+U6pBO19UVIQgiP4Thm0wFvPUFD6fz+Fw0C6IoqIiBoNh0AWRnJwMACgtLT19+nR2dvZksjJH\noQmGhoZiYmIoFMrRo0dhj8rvv/8eHh5eWFg4GQ0TE3Py5ElgRr84ACArK6u2thZOt7J//34AwKpV\nq0wXCvvFT506ZaYYSyEQCAIDA437uEbZKa+++iqJRBrvkMXJYHzKmZOi0+n4fP6OHTuYTCYej2cy\nmdu3bzfoCLt7925cXJyHh0dycnJTU9OEszJTj2nEYvHf//73iIgIOGAzMzPz1q1b+iuYr2HUk818\nPQqFIjAwUH+Uzqg5lJaWbt68OTg4mEAg0Gi0uLi4jz76CH2iHavE5OTkwMBAgwdTayORSBYsWBAc\nHGz8T8Uou0OlUq1atYpEIl26dMkm8jDswOXLlw3GqFgEOEbl8uXLls3WNDweb968eb6+vvX19ca/\njn7Gq1Sqbdu2IQjyt7/9zeC5G8NpOHLkiP5Iw8mTn59PpVLHGitiJS5fvuzn5xceHt7S0jLqCqYu\namfPnqXT6UFBQd9//71BHyqGc1BRUbF48WJL5bZ48WJbjttrbm7Ozc0FAOTm5poYDPuU+7bu7u7t\n27e7uLgkJSUZ/GmEoQ8wib3VORsDAwN79+51c3OLjIw8e/as6ZXN2vv37t1bvHgxgiCZmZkXL17U\naDSW0ImBMW6amprefPNNKpXq7+9/5MgRtVr91E3G0cD873//y8zMhLPUffbZZ+MaO4+BMRk0Gs3F\nixeh/UJCQj799FPzR8KO+xra2NgITyN3d/cXXnjh559/xt7mxLAed+/e3bNnD4fDmfBNxARvE0Ui\n0ZEjR5YsWQLjgeTl5eXn52MTTmBYivv37+/btw/O/BYaGrpv3z70b43xMtkJ33p7e+GEWCUlJSQS\nKSMjA071hs3KiTFehoeHi4uL4YSYbW1twcHBL7zwQm5u7ty5cyeTrcWm7eTxeBcuXLh69WpxcbFI\nJAoODs7MzHzmmWcyMjK8vLwsUgSG86FWqysqKuCEhnfv3tXpdImJiZmZmStXrkRH70wSy0++rNFo\nampqCgsLCwsLb968qVKpQkND4XzSCxYsSEhIcLRAGRg2RiQSVVZWlpaWVlVVlZaWCoXCgICAhQsX\nZmdnZ2dnW7xBtO4U+kNDQ7du3YJz7N67d08mk8FXAJOTk5OSkuLi4uAQUwznRiaTwVn04eTiTU1N\nCIJERESkpKSkpqYuXLgQvmhnJWwXCEWlUlVXV8NKlpWVPX78GAAQEBAQFxcHA2XExcVFRESgUzFh\nTF34fD6McgMjojQ3N6vVajhhPhpDwWa3r3YLZyUQCPT3QkNDg0qlcnd3j4qKioiIiIyMhPGrZs6c\nCcd8YzgmWq22s7OzSY/a2tq+vj4AAJvNjntCfHz8jBkz7HKPav+IbRClUllXV/fgwYPa2lq4p9rb\n29VqNYIgQUFB0OswxpUTBDudosBAvp2dnZ2dnTBiW1NTU3NzM3yN1c/PDz0s9tMAAAb0SURBVDZM\ns2bNgp52kG4GR7G4MUqlsrW1Fdq9ubm5sbGxpaXFINgpJCQkhMPhsNlsBoPh7++P3epMEqFQyOVy\ne3p6oJthFN/Ozk79QL5hYWFosEiIcVh0B8FxLT4qUqkUDZ2MHoDOzk70nUgcDufv7x8QEKAfQBnG\neIfzjzrskbAZMpkMDRAOgybDAMq8J8D3iwEAZDIZbUFg9GT4ZWp1Ekwxi4+FXC7v6upCY13rHzAe\njzc4OIiu6eLi4v0ELy8v/e80Go1MJlMoFDKZTKfTKRQKhUIhEol2rJc5aLXa4eHh4eFhiUQikUjE\nYrFQKBSLxSKRCA13LxAI0O+ogwEARCIRRqDWbw78/f1ZLBaDwfDx8bFjvSyFk1jcNHK5vK+vTyAQ\noEd6cHAQPeSDg4MCgWBoaGh4eBjGvdYHj8dTKBToeAKBQCKRXF1d3d3diUSiq6sriUSCKyAIgl4f\nXFxcjB8VKBSKQdA94+LkcjnqP5lMJpfLFQqFVCpVq9VisRhaGTx5xV0oFEJDS6VS4ypTKBQqlYqe\nxj4+Pt56wEQ/Pz909ggnZlpY3HykUqlYLJZIJEKhUCQSwe9ouwitplarR0ZGlEoldKFSqRwZGYE/\nwUz0nYoCfakPnNlQP0X/3HBzc/Pw8CAQCGQyGYfD0Wg0AAB0JJVKhWvC6wy85lCpVPQSNB2Maz6Y\nxTGcHOy/dAwnB7M4hpODWRzDycEsjuHkYBbHcHIwi095kCc8dc3q6uqNGzcGBwe7ubmZv9VUB7P4\nlMfMbt+bN28mJydXV1cfP34cBqq0tjAHAesXdwZgY2z6UC5cuLC0tPT69evp6enmb+UEYBZ3Bswx\nK4lEkkqlw8PD6B+omMUxpgzmmNV4nWlicUe8F6+rq3vuuefIZDKVSs3Kyqqvrzd4NkIXW1tb165d\n6+npqf8rnKU7MDDQ1dU1MDBw586dvb29aObGj1kmUurr65999lk4/GPFihVPDZBgsDmchhgmHj58\nGGYIF+EkxROQPWqV9Zk7dy66MoyvCZ64edTK6mNCw8Qq5RBMbPoV6/Ho0SM6nQ6DJYjF4tLS0rS0\nNGOpMMU4zOTEgnGOlZKamlpaWioWi2E+np6eJkKu6QMjVn755Zdoyrx58wAA+/btQ1N++OGHFStW\nwO8WCbqJZhUTEwNjw5pTR3TxqRrGWykHweEsvnHjRvDn8JPwWI56eIzjJ04sGOdYKVeuXDHIZ/Pm\nzebUIj8/HwAQFxcHFxsaGuC4czabjU5jnZGRgQacsUjQTZ1O19HRERYW9vHHH5tYZ6yUp2oYb6Uc\nBIezOHyjRD/8JDoMVX81mGIcZnJiwTjHStGftRrmw2AwzKmFUqmE7xPAEH779+9/5513OBwOAKC4\nuFin03V0dPj4+KDRQiwSdLOxsZHNZqempo4q6am1fqqG8VbKQXA4i8M3L58awtQ4BWKpCJrGKTAf\nPB5vZkXeeOMNAMBf//pXjUbDZrNra2vfe+89AMDWrVt1Ot2BAwdee+21Sco2+InBYJBIJADAyZMn\nx1rHRIo5GsZVKQfB4Sxu3IqjryTrrzbW8WYymU9tDuHDkFKphIto+Enj/PVjI42rFdfpdFVVVQAA\nX1/f3377bc6cOTqdDgY0pVKpIyMjoaGhcH4z82U/1eL5+fnHjx8HANDp9K6urlHXMZFijoZxVcpB\ncLgelczMTPDn8JO3b982f3NzolcGBAQAAHg8Hlysrq4eKzf9omE+UJ45zJkzJzY2tr+/f+fOnZs2\nbQIAzJw5c/78+SKR6K233vLw8NCfjdIiQTfXrFmzZcuWnJwcoVAIm1XztzVTw7gq5SjY+xwzpLW1\nVb9HpaSkZPny5cZSxxJvTvRKeGxef/11oVDY0NAAH3BHzX/58uUlJSVisRjmY36PCuTzzz8HAODx\nePiHuU6nO3z4MMz5s88+G69sE8dL/6fe3l5fX18AwMGDB03vMYMUczSMq1IOgsNZXKfT1dbWLl++\nnEQiUSiU7OzsR48eAQBwOBy6gumz9KnBOPv7+zds2ODr60sikVauXAmnnjPICi62t7dnZ2dTKBQS\nibR8+fJRY96ZgMfj4fF4/ZC2AwMDrq6ueDyex+ONS7aJKsPXOiHnzp0zWBPeORhvO2puT911462U\nIzAF/t3kcrlwIhT9v0KszTT552864HD34gAABEFgyw25desWAGDJkiX2U4QxhXHEVhxBkMzMzK+/\n/jogIODOnTsvv/yyUCisqKiIjIy0pQaAteJOgSO24oWFhRQKJS0tjU6n5+XlJScn28Xf+l+MVzCB\nzXRimIMjtuIYGBbEEVtxDAwLglkcw8nBLI7h5GAWx3ByMItjODmYxTGcHMziGE4OZnEMJwezOIaT\ng1kcw8n5f7oaPV/WKRYhAAAAAElFTkSuQmCC\n",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#make neat graph\n",
"Image(filename=wf.write_graph())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"170329-15:03:13,141 workflow INFO:\n",
"\t Workflow group_workflow settings: ['check', 'execution', 'logging']\n",
"170329-15:03:13,194 workflow INFO:\n",
"\t Running serially.\n",
"170329-15:03:13,199 workflow INFO:\n",
"\t Executing node fsl_bet in dir: /home/jovyan/work/170327-nipype/notebooks/rfmri_group_1/Group_test/group_workflow/fsl_bet\n",
"170329-15:03:13,261 workflow INFO:\n",
"\t Running: bet /home/jovyan/work/ds000114/sub-01/func/sub-01_task-linebisection_bold.nii.gz /home/jovyan/work/170327-nipype/notebooks/rfmri_group_1/Group_test/group_workflow/fsl_bet/sub-01_task-linebisection_bold_brain.nii.gz -F\n"
]
}
],
"source": [
"#define the inputs\n",
"wf.inputs.fsl_bet.in_file = '/home/jovyan/work/ds000114/sub-01/func/sub-01_task-linebisection_bold.nii.gz'\n",
"execution_graph=wf.run()"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down
60 changes: 60 additions & 0 deletions 170327-nipype/notebooks/rfmri_group_1/PreprocessingWorkflow.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@

# coding: utf-8

# In[24]:

# Import workflow elements
from nipype import Node, Workflow
from IPython.display import Image
import warnings
from nipype.interfaces import fsl
import glob


# In[16]:

# Import necessary interfaces


# In[17]:

# make nodes
node_bet = Node(fsl.BET (functional=True), name='fsl_bet')
# gonna want plots and mat
node_mcFlirt = Node(fsl.MCFLIRT(save_mats=True,save_plots=True), name='motion_corr')


# In[20]:

# define workflow
wf = Workflow(name="group_workflow")
#make sure you define a base dir, else it will put everything in the temp dir
wf.base_dir = 'Group_test'


# In[21]:

# workflow connect
# the out_file is the file produced by bet, which then becomes the input of mcflirt
wf.connect([
(node_bet, node_mcFlirt, [("out_file", "in_file")])
])


# In[22]:

#make neat graph
Image(filename=wf.write_graph())


# In[23]:

#define the inputs
wf.inputs.fsl_bet.in_file = '/home/jovyan/work/ds000114/sub-01/func/sub-01_task-linebisection_bold.nii.gz'
execution_graph=wf.run()


# In[ ]: