-
Notifications
You must be signed in to change notification settings - Fork 70
[sharktank] toy model for gpt-oss #2516
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
oyazdanb
wants to merge
2
commits into
main
Choose a base branch
from
users/oyazdanb/gpt_oss_toy
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 1 commit
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
386 changes: 386 additions & 0 deletions
386
sharktank/sharktank/models/gpt_oss/orig_pytorch_model.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,386 @@ | ||
| import json | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Add the following to all the new files: |
||
| import math | ||
| import os | ||
| from dataclasses import dataclass | ||
|
|
||
| import torch | ||
| import torch.distributed as dist | ||
|
|
||
|
|
||
| @dataclass | ||
| class ModelConfig: | ||
| num_hidden_layers: int = 36 | ||
| num_experts: int = 128 | ||
| experts_per_token: int = 4 | ||
| vocab_size: int = 201088 | ||
| hidden_size: int = 2880 | ||
| intermediate_size: int = 2880 | ||
| swiglu_limit: float = 7.0 | ||
| head_dim: int = 64 | ||
| num_attention_heads: int = 64 | ||
| num_key_value_heads: int = 8 | ||
| sliding_window: int = 128 | ||
| initial_context_length: int = 4096 | ||
| rope_theta: float = 150000.0 | ||
| rope_scaling_factor: float = 32.0 | ||
| rope_ntk_alpha: float = 1.0 | ||
| rope_ntk_beta: float = 32.0 | ||
|
|
||
|
|
||
| class RMSNorm(torch.nn.Module): | ||
| def __init__( | ||
| self, num_features: int, eps: float = 1e-05, device: torch.device | None = None | ||
| ): | ||
| super().__init__() | ||
| self.num_features = num_features | ||
| self.eps = eps | ||
| self.scale = torch.nn.Parameter( | ||
| torch.ones(num_features, device=device, dtype=torch.float32) | ||
| ) | ||
|
|
||
| def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
| assert x.shape[-1] == self.num_features | ||
| t, dtype = x.float(), x.dtype | ||
| t = t * torch.rsqrt(torch.mean(t**2, dim=-1, keepdim=True) + self.eps) | ||
| return (t * self.scale).to(dtype) | ||
|
|
||
|
|
||
| def _apply_rotary_emb( | ||
| x: torch.Tensor, | ||
| cos: torch.Tensor, | ||
| sin: torch.Tensor, | ||
| ) -> torch.Tensor: | ||
| cos = cos.unsqueeze(-2).to(x.dtype) | ||
| sin = sin.unsqueeze(-2).to(x.dtype) | ||
| x1, x2 = torch.chunk(x, 2, dim=-1) | ||
| o1 = x1 * cos - x2 * sin | ||
| o2 = x2 * cos + x1 * sin | ||
| return torch.cat((o1, o2), dim=-1) | ||
|
|
||
|
|
||
| class RotaryEmbedding(torch.nn.Module): | ||
| def __init__( | ||
| self, | ||
| head_dim: int, | ||
| base: int, | ||
| dtype: torch.dtype, | ||
| initial_context_length: int = 4096, | ||
| scaling_factor: float = 1.0, | ||
| ntk_alpha: float = 1.0, | ||
| ntk_beta: float = 32.0, | ||
| device: torch.device | None = None, | ||
| ) -> None: | ||
| super().__init__() | ||
| self.head_dim = head_dim | ||
| self.base = base | ||
| self.dtype = dtype | ||
| self.initial_context_length = initial_context_length | ||
| self.scaling_factor = scaling_factor | ||
| self.ntk_alpha = ntk_alpha | ||
| self.ntk_beta = ntk_beta | ||
| self.device = device | ||
|
|
||
| def _compute_concentration_and_inv_freq(self) -> torch.Tensor: | ||
| """See YaRN paper: https://arxiv.org/abs/2309.00071""" | ||
| freq = self.base ** ( | ||
| torch.arange(0, self.head_dim, 2, dtype=torch.float, device=self.device) | ||
| / self.head_dim | ||
| ) | ||
| if self.scaling_factor > 1.0: | ||
| concentration = ( | ||
| 0.1 * math.log(self.scaling_factor) + 1.0 | ||
| ) # YaRN concentration | ||
|
|
||
| d_half = self.head_dim / 2 | ||
| # NTK by parts | ||
| low = ( | ||
| d_half | ||
| * math.log(self.initial_context_length / (self.ntk_beta * 2 * math.pi)) | ||
| / math.log(self.base) | ||
| ) | ||
| high = ( | ||
| d_half | ||
| * math.log(self.initial_context_length / (self.ntk_alpha * 2 * math.pi)) | ||
| / math.log(self.base) | ||
| ) | ||
| assert 0 < low < high < d_half - 1 | ||
|
|
||
| interpolation = 1.0 / (self.scaling_factor * freq) | ||
| extrapolation = 1.0 / freq | ||
|
|
||
| ramp = ( | ||
| torch.arange(d_half, dtype=torch.float32, device=freq.device) - low | ||
| ) / (high - low) | ||
| mask = 1 - ramp.clamp(0, 1) | ||
|
|
||
| inv_freq = interpolation * (1 - mask) + extrapolation * mask | ||
| else: | ||
| concentration = 1.0 | ||
| inv_freq = 1.0 / freq | ||
|
|
||
| return concentration, inv_freq | ||
|
|
||
| def _compute_cos_sin(self, num_tokens: int): | ||
| concentration, inv_freq = self._compute_concentration_and_inv_freq() | ||
| t = torch.arange(num_tokens, dtype=torch.float32, device=self.device) | ||
| freqs = torch.einsum("i,j->ij", t, inv_freq) | ||
| cos = freqs.cos() * concentration | ||
| sin = freqs.sin() * concentration | ||
| return cos, sin | ||
|
|
||
| def forward( | ||
| self, | ||
| query: torch.Tensor, | ||
| key: torch.Tensor, | ||
| ) -> tuple[torch.Tensor, torch.Tensor]: | ||
| num_tokens = query.shape[0] | ||
| cos, sin = self._compute_cos_sin(num_tokens) | ||
|
|
||
| query_shape = query.shape | ||
| query = query.view(num_tokens, -1, self.head_dim) | ||
| query = _apply_rotary_emb(query, cos, sin) | ||
| query = query.reshape(query_shape) | ||
|
|
||
| key_shape = key.shape | ||
| key = key.view(num_tokens, -1, self.head_dim) | ||
| key = _apply_rotary_emb(key, cos, sin) | ||
| key = key.reshape(key_shape) | ||
| return query, key | ||
|
|
||
|
|
||
| def sdpa(Q, K, V, S, sm_scale, sliding_window=0): | ||
| # sliding_window == 0 means no sliding window | ||
| n_tokens, n_heads, q_mult, d_head = Q.shape | ||
| assert K.shape == (n_tokens, n_heads, d_head) | ||
| assert V.shape == (n_tokens, n_heads, d_head) | ||
| K = K[:, :, None, :].expand(-1, -1, q_mult, -1) | ||
| V = V[:, :, None, :].expand(-1, -1, q_mult, -1) | ||
| S = S.reshape(n_heads, q_mult, 1, 1).expand(-1, -1, n_tokens, -1) | ||
| mask = torch.triu(Q.new_full((n_tokens, n_tokens), -float("inf")), diagonal=1) | ||
| if sliding_window > 0: | ||
| mask += torch.tril( | ||
| mask.new_full((n_tokens, n_tokens), -float("inf")), diagonal=-sliding_window | ||
| ) | ||
| QK = torch.einsum("qhmd,khmd->hmqk", Q, K) | ||
| QK *= sm_scale | ||
| QK += mask[None, None, :, :] | ||
| QK = torch.cat([QK, S], dim=-1) | ||
| W = torch.softmax(QK, dim=-1) | ||
| W = W[..., :-1] | ||
| attn = torch.einsum("hmqk,khmd->qhmd", W, V) | ||
| return attn.reshape(n_tokens, -1) | ||
|
|
||
|
|
||
| class AttentionBlock(torch.nn.Module): | ||
| def __init__( | ||
| self, | ||
| config: ModelConfig, | ||
| layer_idx: int = 0, | ||
| device: torch.device | None = None, | ||
| ): | ||
| super().__init__() | ||
| self.head_dim = config.head_dim | ||
| self.num_attention_heads = config.num_attention_heads | ||
| self.num_key_value_heads = config.num_key_value_heads | ||
| # Only apply sliding window to every other layer | ||
| self.sliding_window = config.sliding_window if layer_idx % 2 == 0 else 0 | ||
| self.sinks = torch.nn.Parameter( | ||
| torch.empty(config.num_attention_heads, device=device, dtype=torch.bfloat16) | ||
| ) | ||
| self.norm = RMSNorm(config.hidden_size, device=device) | ||
| qkv_dim = config.head_dim * ( | ||
| config.num_attention_heads + 2 * config.num_key_value_heads | ||
| ) | ||
| self.qkv = torch.nn.Linear( | ||
| config.hidden_size, qkv_dim, device=device, dtype=torch.bfloat16 | ||
| ) | ||
| self.out = torch.nn.Linear( | ||
| config.head_dim * config.num_attention_heads, | ||
| config.hidden_size, | ||
| device=device, | ||
| dtype=torch.bfloat16, | ||
| ) | ||
| self.sm_scale = 1 / math.sqrt(config.head_dim) | ||
| self.rope = RotaryEmbedding( | ||
| config.head_dim, | ||
| config.rope_theta, | ||
| torch.float32, | ||
| initial_context_length=config.initial_context_length, | ||
| scaling_factor=config.rope_scaling_factor, | ||
| ntk_alpha=config.rope_ntk_alpha, | ||
| ntk_beta=config.rope_ntk_beta, | ||
| device=device, | ||
| ) | ||
|
|
||
| def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
| t = self.norm(x) | ||
| qkv = self.qkv(t) | ||
| q = qkv[:, : self.num_attention_heads * self.head_dim].contiguous() | ||
| k = qkv[ | ||
| :, | ||
| self.num_attention_heads | ||
| * self.head_dim : (self.num_attention_heads + self.num_key_value_heads) | ||
| * self.head_dim, | ||
| ].contiguous() | ||
| v = qkv[ | ||
| :, | ||
| (self.num_attention_heads + self.num_key_value_heads) | ||
| * self.head_dim : (self.num_attention_heads + 2 * self.num_key_value_heads) | ||
| * self.head_dim, | ||
| ].contiguous() | ||
|
|
||
| q = q.view( | ||
| -1, | ||
| self.num_key_value_heads, | ||
| self.num_attention_heads // self.num_key_value_heads, | ||
| self.head_dim, | ||
| ) | ||
| k = k.view(-1, self.num_key_value_heads, self.head_dim) | ||
| v = v.view(-1, self.num_key_value_heads, self.head_dim) | ||
| q, k = self.rope(q, k) | ||
| t = sdpa(q, k, v, self.sinks, self.sm_scale, self.sliding_window) | ||
| t = self.out(t) | ||
| t = x + t | ||
| return t | ||
|
|
||
|
|
||
| def swiglu(x, alpha: float = 1.702, limit: float = 7.0): | ||
| x_glu, x_linear = x[..., ::2], x[..., 1::2] | ||
| # Clamp the input values | ||
| x_glu = x_glu.clamp(min=None, max=limit) | ||
| x_linear = x_linear.clamp(min=-limit, max=limit) | ||
| out_glu = x_glu * torch.sigmoid(alpha * x_glu) | ||
| # Note we add an extra bias of 1 to the linear layer | ||
| return out_glu * (x_linear + 1) | ||
|
|
||
|
|
||
| class MLPBlock(torch.nn.Module): | ||
| def __init__( | ||
| self, | ||
| config: ModelConfig, | ||
| device: torch.device | None = None, | ||
| ): | ||
| super().__init__() | ||
| self.num_experts = config.num_experts | ||
| self.experts_per_token = config.experts_per_token | ||
| self.swiglu_limit = config.swiglu_limit | ||
| self.world_size = dist.get_world_size() if dist.is_initialized() else 1 | ||
| self.norm = RMSNorm(config.hidden_size, device=device) | ||
| self.gate = torch.nn.Linear( | ||
| config.hidden_size, config.num_experts, device=device, dtype=torch.bfloat16 | ||
| ) | ||
| assert config.intermediate_size % self.world_size == 0 | ||
| self.mlp1_weight = torch.nn.Parameter( | ||
| torch.empty( | ||
| ( | ||
| config.num_experts, | ||
| config.intermediate_size * 2 // self.world_size, | ||
| config.hidden_size, | ||
| ), | ||
| device=device, | ||
| dtype=torch.bfloat16, | ||
| ) | ||
| ) | ||
| self.mlp1_bias = torch.nn.Parameter( | ||
| torch.empty( | ||
| (config.num_experts, config.intermediate_size * 2 // self.world_size), | ||
| device=device, | ||
| dtype=torch.bfloat16, | ||
| ) | ||
| ) | ||
| self.mlp2_weight = torch.nn.Parameter( | ||
| torch.empty( | ||
| ( | ||
| config.num_experts, | ||
| config.hidden_size, | ||
| config.intermediate_size // self.world_size, | ||
| ), | ||
| device=device, | ||
| dtype=torch.bfloat16, | ||
| ) | ||
| ) | ||
| self.mlp2_bias = torch.nn.Parameter( | ||
| torch.empty( | ||
| (config.num_experts, config.hidden_size), | ||
| device=device, | ||
| dtype=torch.bfloat16, | ||
| ) | ||
| ) | ||
|
|
||
| def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
| t = self.norm(x) | ||
| g = self.gate(t) | ||
| experts = torch.topk(g, k=self.experts_per_token, dim=-1, sorted=True) | ||
| expert_weights = torch.nn.functional.softmax(experts.values, dim=1) | ||
| expert_indices = experts.indices | ||
|
|
||
| # MLP #1 | ||
| mlp1_weight = self.mlp1_weight[expert_indices, ...] | ||
| mlp1_bias = self.mlp1_bias[expert_indices, ...] | ||
| t = torch.einsum("beck,bk->bec", mlp1_weight, t) + mlp1_bias | ||
| t = swiglu(t, limit=self.swiglu_limit) | ||
|
|
||
| # MLP #2 | ||
| mlp2_weight = self.mlp2_weight[expert_indices, ...] | ||
| mlp2_bias = self.mlp2_bias[expert_indices, ...] | ||
| t = torch.einsum("beck,bek->bec", mlp2_weight, t) | ||
| if self.world_size > 1: | ||
| dist.all_reduce(t, op=dist.ReduceOp.SUM) | ||
| t += mlp2_bias | ||
|
|
||
| # Weighted sum of experts | ||
| t = torch.einsum("bec,be->bc", t, expert_weights) | ||
|
|
||
| return x + t | ||
|
|
||
|
|
||
| class TransformerBlock(torch.nn.Module): | ||
| def __init__( | ||
| self, | ||
| config: ModelConfig, | ||
| layer_idx: int, | ||
| device: torch.device | None = None, | ||
| ): | ||
| super().__init__() | ||
| self.layer_idx = layer_idx | ||
| self.attn = AttentionBlock(config, layer_idx, device) | ||
| self.mlp = MLPBlock(config, device) | ||
|
|
||
| def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
| x = self.attn(x) | ||
| x = self.mlp(x) | ||
| return x | ||
|
|
||
|
|
||
| class Transformer(torch.nn.Module): | ||
| def __init__( | ||
| self, | ||
| config: ModelConfig, | ||
| device: torch.device | None = None, | ||
| ): | ||
| super().__init__() | ||
| self.embedding = torch.nn.Embedding( | ||
| config.vocab_size, config.hidden_size, device=device, dtype=torch.bfloat16 | ||
| ) | ||
| self.block = torch.nn.ModuleList( | ||
| [ | ||
| TransformerBlock(config, layer_idx, device) | ||
| for layer_idx in range(config.num_hidden_layers) | ||
| ] | ||
| ) | ||
| self.norm = RMSNorm(config.hidden_size, device=device) | ||
| self.unembedding = torch.nn.Linear( | ||
| config.hidden_size, | ||
| config.vocab_size, | ||
| bias=False, | ||
| device=device, | ||
| dtype=torch.bfloat16, | ||
| ) | ||
|
|
||
| def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
| x = self.embedding(x) | ||
| for block in self.block: | ||
| x = block(x) | ||
| x = self.norm(x) | ||
| x = self.unembedding(x) | ||
| return x | ||
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can rename to
ref_pytorch_model.pyand if only used in testing, can be moved totests/models/gpt_oss/