-
Notifications
You must be signed in to change notification settings - Fork 32
[SYCLomatic] Add behavior test for cmake helper variable in target_link_libraries #577
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
daiyaan-ahmed6
wants to merge
5
commits into
oneapi-src:SYCLomatic
Choose a base branch
from
daiyaan-ahmed6:cmake_target_link_libs
base: SYCLomatic
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 2 commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
303d0fc
[SYCLomatic] Add behavior test for cmake helper function target_link_…
daiyaan-ahmed6 261586a
Change CMake version and test to run on windows OS
daiyaan-ahmed6 5b21ba1
Fix Cmake for windows OD
daiyaan-ahmed6 6ed309e
Fix for ICX compiler on windows
daiyaan-ahmed6 b13093c
Merge branch 'SYCLomatic' into cmake_target_link_libs
daiyaan-ahmed6 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
15 changes: 15 additions & 0 deletions
15
behavior_tests/src/cmake_target_link_libraries/CMakeLists.txt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
cmake_minimum_required(VERSION 3.10) | ||
project(foo LANGUAGES CXX ) | ||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl") | ||
find_program(dpct_bin_path NAMES dpct PATHS) | ||
get_filename_component(bin_path_of_dpct ${dpct_bin_path} DIRECTORY) | ||
set(dpct_cmake_file_path "${bin_path_of_dpct}/../cmake/dpct.cmake") | ||
include(${dpct_cmake_file_path}) | ||
find_package(CUDAToolkit) | ||
include_directories(${CUDNN_INCLUDE_DIR}) | ||
|
||
set(SOURCES | ||
${CMAKE_SOURCE_DIR}/main.dp.cpp | ||
) | ||
add_executable(foo-bar ${SOURCES}) | ||
target_link_libraries(foo-bar PUBLIC -qmkl ${DNN_LIB}) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
# ====------ do_test.py---------- *- Python -* ----===## | ||
# | ||
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
# See https://llvm.org/LICENSE.txt for license information. | ||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
# | ||
# | ||
# ===----------------------------------------------------------------------===# | ||
import subprocess | ||
import platform | ||
import os | ||
import sys | ||
from test_config import CT_TOOL | ||
|
||
from test_utils import * | ||
|
||
def setup_test(): | ||
change_dir(test_config.current_test) | ||
return True | ||
|
||
def migrate_test(): | ||
# clean previous migration output | ||
if (os.path.exists("build")): | ||
shutil.rmtree("build") | ||
|
||
ret = call_subprocess("mkdir build") | ||
if not ret: | ||
print("Error to create build folder:", test_config.command_output) | ||
|
||
ret = change_dir("build") | ||
if not ret: | ||
print("Error to go to build folder:", test_config.command_output) | ||
|
||
ret = call_subprocess("cmake -G \"Unix Makefiles\" -DCMAKE_CXX_COMPILER=icpx ../") | ||
if not ret: | ||
print("Error to run cmake configure:", test_config.command_output) | ||
|
||
ret = call_subprocess("make") | ||
if not ret: | ||
print("Error to run build process:", test_config.command_output) | ||
|
||
return os.path.exists("foo-bar") | ||
def build_test(): | ||
return True | ||
def run_test(): | ||
return call_subprocess("./foo-bar") |
271 changes: 271 additions & 0 deletions
271
behavior_tests/src/cmake_target_link_libraries/main.dp.cpp
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,271 @@ | ||
#include <dpct/dnnl_utils.hpp> | ||
#include <sycl/sycl.hpp> | ||
#include <dpct/dpct.hpp> | ||
#include <cstdio> | ||
#include <cstdlib> | ||
#include <dpct/blas_utils.hpp> | ||
|
||
#include <iostream> | ||
#include <stdexcept> | ||
#include <vector> | ||
#include <cmath> | ||
|
||
using data_type = double; | ||
template <typename T> | ||
bool check(std::vector<T> &expect, std::vector<T> &actual, int num, | ||
float precision) { | ||
for (int i = 0; i < num; i++) { | ||
if (std::abs(expect[i] - actual[i]) > precision) { | ||
std::cout << "test failed" << std::endl; | ||
std::cout << "expect:" << expect[i] << std::endl; | ||
std::cout << "actual:" << actual[i] << std::endl; | ||
return false; | ||
} | ||
} | ||
return true; | ||
} | ||
bool cublasCheck() { | ||
dpct::device_ext &dev_ct1 = dpct::get_current_device(); | ||
sycl::queue &q_ct1 = dev_ct1.in_order_queue(); | ||
dpct::queue_ptr handle = NULL; | ||
dpct::queue_ptr stream = &q_ct1; | ||
|
||
const std::vector<data_type> A = {1.0, 2.0, 3.0, 4.0}; | ||
const int incx = 1; | ||
|
||
int result = 0.0; | ||
|
||
data_type *d_A = nullptr; | ||
|
||
handle = &q_ct1; | ||
|
||
/* | ||
DPCT1025:0: The SYCL queue is created ignoring the flag and priority options. | ||
*/ | ||
stream = dev_ct1.create_queue(); | ||
handle = stream; | ||
|
||
d_A = (data_type *)sycl::malloc_device(sizeof(data_type) * A.size(), q_ct1); | ||
|
||
stream->memcpy(d_A, A.data(), sizeof(data_type) * A.size()); | ||
|
||
int64_t *res_temp_ptr_ct1 = sycl::malloc_shared<int64_t>(1, q_ct1); | ||
oneapi::mkl::blas::column_major::iamax(*handle, A.size(), d_A, incx, | ||
res_temp_ptr_ct1, | ||
oneapi::mkl::index_base::one) | ||
.wait(); | ||
int res_temp_host_ct2 = (int)*res_temp_ptr_ct1; | ||
dpct::dpct_memcpy(&result, &res_temp_host_ct2, sizeof(int)); | ||
sycl::free(res_temp_ptr_ct1, q_ct1); | ||
|
||
stream->wait(); | ||
|
||
sycl::free(d_A, q_ct1); | ||
|
||
handle = nullptr; | ||
|
||
dev_ct1.destroy_queue(stream); | ||
|
||
dev_ct1.reset(); | ||
if (result == 4) { | ||
return true; | ||
} | ||
return false; | ||
} | ||
template <typename T> | ||
void conv2d(int batch, int color, int rows, int cols, int kCols, | ||
int kRows, T *matrix, float *kernel, T *result, | ||
const sycl::nd_item<3> &item_ct1) { | ||
int tid = item_ct1.get_group(2) * item_ct1.get_local_range(2) + | ||
item_ct1.get_local_id(2); | ||
int kCenterX = kCols / 2; | ||
int kCenterY = kRows / 2; | ||
|
||
for (int b = 0; b < batch; b++) { | ||
for (int c = 0; c < color; c++) { | ||
for (int i = 0; i < rows; i++) { | ||
for (int j = 0; j < cols; j++) { | ||
for (int m = 0; m < kRows; m++) { | ||
int mm = kRows - 1 - m; | ||
for (int n = 0; n < kCols; n++) { | ||
int nn = kCols - 1 - n; | ||
|
||
int ii = i + (kCenterY - mm); | ||
int jj = j + (kCenterX - nn); | ||
|
||
if (ii >= 0 && ii < rows && jj >= 0 && jj < cols) { | ||
result[b * color * rows * cols + c * rows * cols + i * cols + | ||
j] += | ||
matrix[b * c * ii * jj + c * ii * jj + ii * kRows + jj] * | ||
kernel[mm * kRows + nn]; | ||
result[tid] = result[b * color * rows * cols + c * rows * cols + | ||
i * cols + j]; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
bool cudnnCheck() { | ||
dpct::device_ext &dev_ct1 = dpct::get_current_device(); | ||
sycl::queue &q_ct1 = dev_ct1.in_order_queue(); | ||
dpct::dnnl::engine_ext handle; | ||
dpct::dnnl::memory_desc_ext dataTensor, outTensor, scalebiasTensor; | ||
handle.create_engine(); | ||
|
||
/* | ||
DPCT1026:1: The call to cudnnCreateTensorDescriptor was removed because this | ||
call is redundant in SYCL. | ||
*/ | ||
/* | ||
DPCT1026:2: The call to cudnnCreateTensorDescriptor was removed because this | ||
call is redundant in SYCL. | ||
*/ | ||
/* | ||
DPCT1026:3: The call to cudnnCreateTensorDescriptor was removed because this | ||
call is redundant in SYCL. | ||
*/ | ||
|
||
int in = 2, ic = 4, ih = 5, iw = 5; | ||
int on = 2, oc = 4, oh = 5, ow = 5; | ||
int sbn = 1, sbc = 4, sbh = 5, sbw = 5; | ||
int ele_num = in * ic * ih * iw; | ||
int oele_num = on * oc * oh * ow; | ||
int sele_num = sbn * sbc * sbh * sbw; | ||
dataTensor.set(dpct::dnnl::memory_format_tag::nchw, | ||
dpct::library_data_t::real_float, in, ic, ih, iw); | ||
outTensor.set(dpct::dnnl::memory_format_tag::nchw, | ||
dpct::library_data_t::real_float, on, oc, oh, ow); | ||
scalebiasTensor.set(dpct::dnnl::memory_format_tag::nchw, | ||
dpct::library_data_t::real_float, sbn, sbc, sbh, sbw); | ||
|
||
int save = 1; | ||
float *data, *out, *scale, *bias, *rmean, *rvar, *smean, *svar, *z; | ||
std::vector<float> host_data(ele_num, 1.0f); | ||
std::vector<float> host_z(oele_num, 1.0f); | ||
std::vector<float> host_out(oele_num, 0.0f); | ||
std::vector<float> host_scale(sele_num, 1.0f); | ||
std::vector<float> host_bias(sele_num, 0.0f); | ||
std::vector<float> host_rmean(sele_num, 0.0f); | ||
std::vector<float> host_rvar(sele_num, 0.0f); | ||
std::vector<float> host_smean(save * sele_num, 0.0f); | ||
std::vector<float> host_svar(save * sele_num, 0.0f); | ||
|
||
for (int i = 0; i < ele_num; i++) { | ||
host_data[i] = i + 4.f; | ||
host_out[i] = 1.f; | ||
host_z[i] = 10; | ||
} | ||
for (int i = 0; i < sele_num; i++) { | ||
host_scale[i] = i; | ||
host_bias[i] = i; | ||
host_rmean[i] = i; | ||
host_rvar[i] = i; | ||
host_smean[i] = i; | ||
host_svar[i] = i; | ||
} | ||
|
||
data = sycl::malloc_device<float>(ele_num, q_ct1); | ||
z = sycl::malloc_device<float>(oele_num, q_ct1); | ||
out = sycl::malloc_device<float>(oele_num, q_ct1); | ||
scale = sycl::malloc_device<float>(sele_num, q_ct1); | ||
bias = sycl::malloc_device<float>(sele_num, q_ct1); | ||
rmean = sycl::malloc_device<float>(sele_num, q_ct1); | ||
rvar = sycl::malloc_device<float>(sele_num, q_ct1); | ||
smean = (float *)sycl::malloc_device(sizeof(float) * save * sele_num, q_ct1); | ||
svar = (float *)sycl::malloc_device(sizeof(float) * save * sele_num, q_ct1); | ||
|
||
q_ct1.memcpy(data, host_data.data(), sizeof(float) * ele_num); | ||
q_ct1.memcpy(z, host_z.data(), sizeof(float) * oele_num); | ||
q_ct1.memcpy(out, host_out.data(), sizeof(float) * oele_num); | ||
q_ct1.memcpy(scale, host_scale.data(), sizeof(float) * sele_num); | ||
q_ct1.memcpy(bias, host_bias.data(), sizeof(float) * sele_num); | ||
q_ct1.memcpy(rmean, host_rmean.data(), sizeof(float) * sele_num); | ||
q_ct1.memcpy(rvar, host_rvar.data(), sizeof(float) * sele_num); | ||
q_ct1.memcpy(smean, host_smean.data(), sizeof(float) * save * sele_num); | ||
q_ct1.memcpy(svar, host_svar.data(), sizeof(float) * save * sele_num).wait(); | ||
|
||
float alpha = 2.5f, beta = 1.5f, eps = 1.f; | ||
double factor = 0.5f; | ||
dpct::dnnl::activation_desc ActivationDesc; | ||
/* | ||
DPCT1026:4: The call to cudnnCreateActivationDescriptor was removed because | ||
this call is redundant in SYCL. | ||
*/ | ||
/* | ||
DPCT1007:5: Migration of Nan numbers propagation option is not supported. | ||
*/ | ||
ActivationDesc.set(dnnl::algorithm::eltwise_relu_use_dst_for_bwd, 0.0f); | ||
|
||
auto status = | ||
DPCT_CHECK_ERROR(handle.async_batch_normalization_forward_inference( | ||
dpct::dnnl::batch_normalization_mode::per_activation, | ||
dpct::dnnl::batch_normalization_ops::none, ActivationDesc, eps, alpha, | ||
dataTensor, data, beta, outTensor, out, dataTensor, z, | ||
scalebiasTensor, scale, bias, scalebiasTensor, smean, svar)); | ||
|
||
dev_ct1.queues_wait_and_throw(); | ||
q_ct1.memcpy(host_out.data(), out, sizeof(float) * oele_num).wait(); | ||
std::vector<float> expect = { | ||
1.5, 11.0711, 18.047, 24, 29.3885, 34.4124, 39.1779, | ||
43.7487, 48.1667, 52.4605, 56.6511, 60.7543, 64.782, 68.744, | ||
72.6478, 76.5, 80.3057, 84.0694, 87.7948, 91.4853, 95.1436, | ||
98.7721, 102.373, 105.949, 109.5, | ||
|
||
113.029, 116.537, 120.025, 123.495, 126.947, 130.382, 133.801, | ||
137.205, 140.595, 143.97, 147.333, 150.684, 154.022, 157.349, | ||
160.664, 163.969, 167.264, 170.549, 173.825, 177.091, 180.349, | ||
183.598, 186.839, 190.071, 193.296, | ||
|
||
196.514, 199.724, 202.927, 206.124, 209.314, 212.497, 215.674, | ||
218.845, 222.01, 225.169, 228.322, 231.47, 234.613, 237.75, | ||
240.882, 244.009, 247.132, 250.249, 253.362, 256.471, 259.575, | ||
262.674, 265.77, 268.861, 271.948, | ||
|
||
275.031, 278.11, 281.185, 284.257, 287.325, 290.389, 293.45, | ||
296.507, 299.56, 302.611, 305.658, 308.702, 311.742, 314.78, | ||
317.814, 320.846, 323.874, 326.9, 329.922, 332.942, 335.959, | ||
338.973, 341.985, 344.994, 348, | ||
|
||
1.5, 187.848, 306.722, 399, 476.602, 544.723, 606.125, | ||
662.467, 714.833, 763.973, 810.43, 854.611, 896.832, 937.343, | ||
976.344, 1014, 1050.45, 1085.8, 1120.17, 1153.62, 1186.23, | ||
1218.08, 1249.2, 1279.66, 1309.5, | ||
|
||
1338.75, 1367.46, 1395.66, 1423.36, 1450.61, 1477.42, 1503.82, | ||
1529.83, 1555.46, 1580.73, 1605.67, 1630.27, 1654.57, 1678.57, | ||
1702.27, 1725.71, 1748.87, 1771.78, 1794.45, 1816.87, 1839.07, | ||
1861.05, 1882.81, 1904.36, 1925.71, | ||
|
||
1946.86, 1967.83, 1988.61, 2009.22, 2029.65, 2049.92, 2070.02, | ||
2089.96, 2109.75, 2129.39, 2148.88, 2168.22, 2187.43, 2206.5, | ||
2225.44, 2244.25, 2262.93, 2281.49, 2299.92, 2318.24, 2336.44, | ||
2354.53, 2372.51, 2390.38, 2408.14, | ||
|
||
2425.8, 2443.36, 2460.82, 2478.18, 2495.44, 2512.61, 2529.69, | ||
2546.67, 2563.57, 2580.38, 2597.1, 2613.74, 2630.3, 2646.78, | ||
2663.17, 2679.49, 2695.73, 2711.89, 2727.98, 2743.99, 2759.93, | ||
2775.8, 2791.6, 2807.34, 2823, | ||
}; | ||
/* | ||
DPCT1026:6: The call to cudnnDestroy was removed because this call is | ||
redundant in SYCL. | ||
*/ | ||
sycl::free(data, q_ct1); | ||
sycl::free(out, q_ct1); | ||
return check(expect, host_out, expect.size(), 1e-1); | ||
} | ||
|
||
int main(int argc, char *argv[]) { | ||
if (cublasCheck() && cudnnCheck()) { | ||
printf("Both case passed \n"); | ||
return 0; | ||
} else { | ||
printf("Tests failed"); | ||
exit(-1); | ||
} | ||
return 0; | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.