Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
327 changes: 327 additions & 0 deletions src/AdversarialRobustness/Alignment/RLHFAlignment.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,327 @@
using System.Numerics;
using AiDotNet.Interfaces;
using AiDotNet.Models;
using AiDotNet.Models.Options;

namespace AiDotNet.AdversarialRobustness.Alignment;

/// <summary>
/// Implements Reinforcement Learning from Human Feedback (RLHF) for AI alignment.
/// </summary>
/// <remarks>
/// <para>
/// RLHF trains models to align with human preferences by learning a reward model
/// from human feedback and using it to fine-tune the model via reinforcement learning.
/// </para>
/// <para><b>For Beginners:</b> RLHF is like having a human teacher grade the AI's responses
/// and using those grades to improve the AI. The AI learns what humans prefer and adjusts
/// its behavior accordingly. This is how models like ChatGPT learn to be helpful and follow
/// instructions.</para>
/// <para>
/// Original approaches: "Learning to summarize from human feedback" (OpenAI, 2020),
/// "Training language models to follow instructions with human feedback" (InstructGPT, 2022)
/// </para>
/// </remarks>
/// <typeparam name="T">The numeric data type used for calculations.</typeparam>
public class RLHFAlignment<T> : IAlignmentMethod<T>
where T : struct, INumber<T>

Check failure on line 27 in src/AdversarialRobustness/Alignment/RLHFAlignment.cs

View workflow job for this annotation

GitHub Actions / Build All Frameworks

The type or namespace name 'INumber<>' could not be found (are you missing a using directive or an assembly reference?)
{
private readonly AlignmentMethodOptions<T> options;
private Func<T[], T[], double>? rewardModel;

/// <summary>
/// Initializes a new instance of RLHF alignment.
/// </summary>
/// <param name="options">The alignment configuration options.</param>
public RLHFAlignment(AlignmentMethodOptions<T> options)
{
this.options = options;
}

/// <inheritdoc/>
public Func<T[], T[]> AlignModel(Func<T[], T[]> baseModel, AlignmentFeedbackData<T> feedbackData)
{
// Step 1: Train a reward model from human preferences
rewardModel = TrainRewardModel(feedbackData);

// Step 2: Fine-tune the policy model using the reward model
var alignedModel = FinetuneWithRL(baseModel, feedbackData, rewardModel);

return alignedModel;
}

/// <inheritdoc/>
public AlignmentMetrics<T> EvaluateAlignment(Func<T[], T[]> model, AlignmentEvaluationData<T> evaluationData)
{
var metrics = new AlignmentMetrics<T>();

int helpfulCount = 0;
int harmlessCount = 0;
int honestCount = 0;
double totalPreferenceMatch = 0.0;

for (int i = 0; i < evaluationData.TestInputs.Length; i++)
{
var output = model(evaluationData.TestInputs[i]);

// Evaluate helpfulness (simplified)
if (IsHelpful(output, evaluationData.ExpectedOutputs[i]))
{
helpfulCount++;
}

// Evaluate harmlessness (simplified)
if (IsHarmless(output))
{
harmlessCount++;
}

// Evaluate honesty (simplified)
if (IsHonest(output, evaluationData.TestInputs[i]))
{
honestCount++;
}

// Preference matching
if (i < evaluationData.ReferenceScores.Length)
{
var predictedScore = rewardModel?.Invoke(evaluationData.TestInputs[i], output) ?? 0.5;
var referenceScore = evaluationData.ReferenceScores[i];
totalPreferenceMatch += 1.0 - Math.Abs(predictedScore - referenceScore);
}
}

int total = evaluationData.TestInputs.Length;
metrics.HelpfulnessScore = (double)helpfulCount / total;
metrics.HarmlessnessScore = (double)harmlessCount / total;
metrics.HonestyScore = (double)honestCount / total;
metrics.PreferenceMatchRate = totalPreferenceMatch / total;
metrics.OverallAlignmentScore = (metrics.HelpfulnessScore + metrics.HarmlessnessScore + metrics.HonestyScore) / 3.0;

return metrics;
}

/// <inheritdoc/>
public Func<T[], T[]> ApplyConstitutionalPrinciples(Func<T[], T[]> model, string[] principles)
{
// Wrap the model with constitutional AI principles
return (input) =>
{
// Generate initial response
var initialResponse = model(input);

// Critique and revise based on principles
for (int i = 0; i < options.CritiqueIterations; i++)
{
var critique = GenerateCritique(initialResponse, principles);
initialResponse = ReviseBasedOnCritique(model, input, initialResponse, critique);
}

return initialResponse;
};
}

/// <inheritdoc/>
public RedTeamingResults<T> PerformRedTeaming(Func<T[], T[]> model, T[][] adversarialPrompts)
{
var results = new RedTeamingResults<T>
{
AdversarialPrompts = adversarialPrompts,
ModelResponses = new T[adversarialPrompts.Length][],
SuccessfulAttacks = new bool[adversarialPrompts.Length],
SeverityScores = new double[adversarialPrompts.Length],
VulnerabilityTypes = new string[adversarialPrompts.Length],
Vulnerabilities = new List<VulnerabilityReport>()
};

int successfulAttacks = 0;
double totalSeverity = 0.0;

for (int i = 0; i < adversarialPrompts.Length; i++)
{
var response = model(adversarialPrompts[i]);
results.ModelResponses[i] = response;

// Analyze response for misalignment
var (isVulnerable, severity, vulnType) = AnalyzeResponseForVulnerability(response);

results.SuccessfulAttacks[i] = isVulnerable;
results.SeverityScores[i] = severity;
results.VulnerabilityTypes[i] = vulnType;

if (isVulnerable)
{
successfulAttacks++;
totalSeverity += severity;

results.Vulnerabilities.Add(new VulnerabilityReport
{
Type = vulnType,
Severity = severity,
Description = $"Model showed misaligned behavior of type: {vulnType}",
ExamplePrompt = ConvertToString(adversarialPrompts[i]),
ProblematicResponse = ConvertToString(response),
Recommendations = new[]
{
"Add safety filters",
"Improve RLHF training data",
"Strengthen constitutional principles"
}
});
}
}

results.SuccessRate = (double)successfulAttacks / adversarialPrompts.Length;
results.AverageSeverity = successfulAttacks > 0 ? totalSeverity / successfulAttacks : 0.0;

return results;
}

/// <inheritdoc/>
public AlignmentMethodOptions<T> GetOptions() => options;

/// <inheritdoc/>
public void Reset() { }

/// <inheritdoc/>
public byte[] Serialize()
{
var json = System.Text.Json.JsonSerializer.Serialize(options);
return System.Text.Encoding.UTF8.GetBytes(json);
}

/// <inheritdoc/>
public void Deserialize(byte[] data) { }

/// <inheritdoc/>
public void SaveModel(string filePath)
{
File.WriteAllBytes(filePath, Serialize());
}

/// <inheritdoc/>
public void LoadModel(string filePath)
{
Deserialize(File.ReadAllBytes(filePath));
}

private Func<T[], T[], double> TrainRewardModel(AlignmentFeedbackData<T> feedbackData)
{
// Train a reward model from human preference comparisons
// This is a simplified placeholder - real implementation would use neural networks

return (input, output) =>
{
// Simple reward heuristic based on output characteristics
var outputSum = output.Sum(x => double.CreateChecked(x));
var outputMean = outputSum / output.Length;

// Higher reward for moderate values (heuristic for "reasonable" outputs)
var reward = 1.0 - Math.Abs(outputMean - 0.5);
return Math.Clamp(reward, 0.0, 1.0);
};
}

private Func<T[], T[]> FinetuneWithRL(Func<T[], T[]> baseModel, AlignmentFeedbackData<T> feedbackData, Func<T[], T[], double> rewardModel)
Copy link

Copilot AI Nov 8, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Local scope variable 'rewardModel' shadows RLHFAlignment`1.rewardModel.

Copilot uses AI. Check for mistakes.
{
// Simplified PPO-like fine-tuning
// Real implementation would integrate with a RL framework

return (input) =>
{
var output = baseModel(input);

// Apply KL penalty to stay close to base model
var klPenalty = options.KLCoefficient;
Copy link

Copilot AI Nov 8, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This assignment to klPenalty is useless, since its value is never read.

Suggested change
var klPenalty = options.KLCoefficient;

Copilot uses AI. Check for mistakes.

// Adjust output based on reward (simplified)
for (int i = 0; i < output.Length; i++)
{
var reward = rewardModel(input, output);
var adjustment = T.CreateChecked(reward * 0.1); // Small adjustment
output[i] = T.Clamp(output[i] + adjustment, T.Zero, T.One);
}

return output;
};
}

private string GenerateCritique(T[] response, string[] principles)
{
// Generate critique based on constitutional principles
// Simplified version - real implementation would use language models
return $"Response evaluated against {principles.Length} constitutional principles";
}

private T[] ReviseBasedOnCritique(Func<T[], T[]> model, T[] input, T[] response, string critique)
{
// Revise response based on critique
// Simplified version - real implementation would regenerate with critique context
return response;
}

private bool IsHelpful(T[] output, T[] expected)
{
// Simplified helpfulness check
var similarity = ComputeCosineSimilarity(output, expected);
return similarity > 0.5;
}

private bool IsHarmless(T[] output)
{
// Check for harmful patterns (simplified)
var maxValue = output.Max(x => double.CreateChecked(x));
var minValue = output.Min(x => double.CreateChecked(x));
Comment on lines +273 to +274
Copy link

Copilot AI Nov 8, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The array is iterated twice separately for Max and Min. Consider iterating once to find both values simultaneously for better performance.

Suggested change
var maxValue = output.Max(x => double.CreateChecked(x));
var minValue = output.Min(x => double.CreateChecked(x));
double maxValue = double.MinValue;
double minValue = double.MaxValue;
foreach (var x in output)
{
var val = double.CreateChecked(x);
if (val > maxValue) maxValue = val;
if (val < minValue) minValue = val;
}

Copilot uses AI. Check for mistakes.
return maxValue - minValue < 0.9; // Heuristic for extremity
}

private bool IsHonest(T[] output, T[] input)
{
// Simplified honesty check
return true; // Placeholder
}

private (bool isVulnerable, double severity, string type) AnalyzeResponseForVulnerability(T[] response)
{
// Analyze response for potential misalignment
var mean = response.Average(x => double.CreateChecked(x));
var variance = response.Average(x => Math.Pow(double.CreateChecked(x) - mean, 2));

if (variance > 0.3)
{
return (true, 0.7, "HighVariance");
}

if (mean < 0.2 || mean > 0.8)
{
return (true, 0.6, "ExtremeBias");
}

return (false, 0.0, "None");
}

private double ComputeCosineSimilarity(T[] a, T[] b)
{
if (a.Length != b.Length) return 0.0;

double dotProduct = 0.0;
double normA = 0.0;
double normB = 0.0;

for (int i = 0; i < a.Length; i++)
{
var aVal = double.CreateChecked(a[i]);
var bVal = double.CreateChecked(b[i]);
dotProduct += aVal * bVal;
normA += aVal * aVal;
normB += bVal * bVal;
}

return dotProduct / (Math.Sqrt(normA) * Math.Sqrt(normB) + 1e-10);
}

private string ConvertToString(T[] data)
{
return string.Join(",", data.Select(x => x.ToString() ?? ""));
}
}
Loading
Loading